Predicting Performance in Ignition Experiments Using Transport Simulation

L. E. Sugiyama MIT

Workshop on Physics Issues for FIRE 1–3 May 2000 PPPL

Summary

• Are there any unifying features of an (axisymmetric) magnetic confinement scheme that can help design a good fusion ignition/burning experiment?

Fusion power and confinement

Plasma stability

Time-dependent evolution

- The most important parameter may be the plasma density How to quantify it?
- Define an idealized "natural density" n_N for ignition of a clean (pure) plasma as a limiting minimum density of operation

There is an approximate scaling for the minimum $n_N \simeq C_N I_p/(B_T a^2)$, over a large range of parameters.

• $C_N \sim 1$ plus Greenwald density limit $n < n_G = I_p / \pi a^2$ leads to a nontrivial limit on the toroidal magnetic field B_T for a practical ignition experiment.

 $B_T\stackrel{>}{\sim} 6T$, if the energy confinement is limited by an H-mode au_E .

Density, Z_{eff} , and Ignition

• There is a limited range of density that allows ignition for a given set of parameters.

Radiation power and transport losses balanced by fusion power.

Ideal ignition temperature, above which fusion power increases more strongly with T than bremsstrahlung radiation losses ($T_o \simeq 6$ keV or uniform $T \simeq 4$ keV)

Lawson criterion for confinement

Also, plasma stability — modes.

- Higher density is required for ignition under degraded conditions.
- Ignition is strongly sensitive to plasma purity (Z_{eff}) Radiation increases with Z_{eff} Dilution of fusion fuel reduces fusion power

Transport simulations show that ignition degrades strongly for $Z_{eff} \simeq 1.5-1.6$ (although $Z_{eff} \stackrel{<}{\sim} 1.2$ has little effect).

- Z_{eff} correlates inversely with density in all experiments to date, $Z_{eff} = C_Z/n_e$. (Coefficient C_Z may vary with local conditions, but is consistent within a given set of experiments.)
- The impurity contamination of a plasma is difficult to control, using present methods.

Natural Density for Ignition

- Define the natural density for ignition as the (range of) density that allows a pure plasma to ignite under a given set of assumptions.
- The natural density measures the best possible ignition performance of a given device under the assumptions. It is also the absolute minimum on the actual density of operation, since any real plasma will have $Z_{eff} \geq 1$.

The minimum natural density is a useful parameter.

- The natural density cannot be too far below the actual density (e.g., a factor of 2), because of the sensitivity of ignition to Z_{eff} .
- Therefore, the natural density should be a good indicator of the actual performance of a machine.

	$\langle n_N angle$	T_{io}/T_{eo}	R/a	B_T	$oldsymbol{I}_p$	\overline{n}_G	P_{Aux}	H^*	$n_{eo}/\langle n_e angle$
Ignitor Ref 12MA	4.2	13.3/14.9	1.32/0.47	13	12	17.3	0	1.8	2.3
Ignitor Ref 12MA	5.5	11.6/12.8	1.32/0.47	13	12	17.3	0	1.7^{a}	2.3
Ignitor Ref 12MA	4.2	17/19.5	1.32/0.47	13	12	17.3	0	1.6^{b}	2.0
Ignitor Ref $12MA^c$	5–6	11-13	1.32/0.47	13	12	17.3	0	$\gtrsim 1$	1.1-2.9
Ignitor Ref 11MA	4.1	15/17	1.32/0.47	13	11	15.9	0	1.7	2.3
Ignitor Ref 11MA	5.5	17.5/21	1.32/0.47	13	11	15.9	0^d	1.6	1.7
Ignitor RevShear e	2.6	32.7/32.1	1.32/0.47	12	7	10.1	8	(2.5) ^e	2.1
Ignitor RevShear	3.0	33.1/32.6	1.32/0.47	12	7	10.1	8	2.5	1.75
FIRE	4^{f}	32/39	2.0/0.525	10	6.5	7.5	20^{g}	$2.1^{h,i}$	1.80
ITER-FEAT	0.6 ^j	65/46 ^k	6.2/2.0	5.3	15.1	1.2	24	2.0^{i}	1.31
ITER EDA l	0.43	$68/44^k$	8.14/2.80	5.7	21	0.73	24	2.0^{i}	1.16
ITER EDA l	0.45	55/39 ^k	8.14/2.80	5.7	21	0.73	24	1.8	1.65
ITER EDA l	0.65	70/40(45/40) ^m	8.14/2.80	5.7	21	0.73	24	1.7	1.17
ITER EDA n	0.63	71/53	8.14/2.80	5.7	21	0.85	24 ^o	2.1	1.68
ITER EDA n,p	0.57	81/55	8.14/2.80	5.7	21	0.85	24 ^o	2.0	1.16

Table 1: Volume-averaged natural density ranges for several experiments

**H* does not include -dW/dt or $-P_{BREM}$ in P_H for L-mode scaling. -dW/dt significantly lowers Ignitor Ref values. Units of keV, m, T, MA, MW, densities in 10^{20} m⁻³. • The minimum natural density satisfies an empirical scaling with the device parameters,

$$n_N \simeq C_N I_p/(B_T a^2).$$

Over a wide range of parameters, $C_N \stackrel{<}{\sim} 1$. (FIRE is higher.)

• Since aspect ratio is similar, $R/a \simeq 3$ (FIRE 3.85), scaling with aspect ratio is not well determined, e.g., $n_N = C_N(R/a)I_p/(B_Ta^2)$ gives similar results.

Table 2: Scaling of the natural density $n_N \simeq C_N I_p/(B_T a^2)$

	$\langle n_N angle$	$I_p/(B_T a^2)$	C_N	$\overline{m{n}}_N{}^a$	$\overline{C}_N{}^a$	$M_G{}^b$	${m eta}_p{}^c$
Ignitor 11 MA	4.1-5.5	3.83	1.1	5.6-6.6	1.46-1.74	0.74	0.26
Ignitor 12 MA	4.2-5.5	4.18	1.0	5.8-7.4	1.39–1.78	0.66	0.22
Ignitor RS	2.6-3.5	2.64	$1.0 – 1.1^d$	3.3–4.4	1.25-1.68	0.73	0.82
FIRE	4	2.36	1.7	4.9	2.07	0.35	1.79
$ITER\operatorname{-}FEAT^d$	0.6	0.71 (0.64)	0.85 (0.95)	0.67	0.94 (1.05)	0.44	0.59
ITER EDA d	0.43-0.64	0.47 (0.38)	0.91 (1.13)	0.52-0.71	1.11-1.50(1.37)	0.39	0.78

^{*a*}Line-averaged density.

^bDensity margin for operation, $M_G \equiv 1 - (\overline{n}_N/n_G)$.

^cVolume-averaged poloidal beta.

 d Values in parentheses based on actual I_p at ignition. ITER EDA used full current $I_p=18\,$ MA.

The natural density is defined by transport simulation.

- Given plasma size and shape R, a, κ , δ , magnetic field B_T and plasma current I_p , available heating power P_{Aux} , intended ignition scenario.
- Assumptions on thermal and particle transport (here, that the energy confinement time follows an L- or H- mode like power scaling scaling, defined by a factor H times τ_L , a given L-mode scaling, such as ITER89-P. Particle transport is defined separately.)
- Full time dependent ignition sequence is followed, starting from initial current and density ramp. If necessary, determine the length of a current rise phase.
- Impose stability conditions, such as a mostly monotonic q-profile with $q_{min} > 1$ or only a small radius where q < 1.
- Start from an initially pure D-T plasma. (Let fusion ⁴He ash accumulate.)

Simulations were carried out for a number of different designs, covering a wide range of parameters.

- Ignitor, Ignitor with reversed shear, FIRE, ITER-FEAT, ITER EDA
- Models were chosen more for consistency rather than for optimizing ignition performance in a given device. Limiting *H* was varied to reflect the intended mode of operation.
- The natural density range is a well defined function of the device parameters. The range is not too broad.

The normalized natural density C_N measures the relative lengths of the density and current ramps, or the magnitude of the minimum density required for ignition compared to the current capacity of the experiment.

- The density ramp time t_N is closely related to the ignition time t_{IGN} for the natural density.
- Current capacity is expensive, so the minimum $t_N \ge t_R$ and $t_{IGN} > t_R$ in practice. Current drive is expensive and often difficult, so the desirable t_N and t_{IGN} are not too much longer than t_R .
- Ignitor Ref and RS have $C_N \simeq 1$ and $t_N \gtrsim t_R$ for ohmic ignition at confinement significantly less than H-mode. Actual operating densities are similar to n_N . The near equality $t_N, t_{IGN} \simeq t_R$ is by design.
- ITER-FEAT and ITER EDA have $C_N \stackrel{<}{\sim} 1$ and $t_N < t_R$. They are intended to operate at significantly higher Z_{eff} and density, where the extra current is needed.
- FIRE has higher $C_N = 1.7$ and $t_N > t_R$. It has a relatively high ignition density for its current and requires fuelling and heating for a significant time after the current ramp to reach ignition. (The natural density is similar to expected operating density.)

FIRE ignition/burning operation could be improved by

- Higher *H* factor
- Higher P_{Aux} , especially during current ramp
- Use of current drive
- Raising $I_p/B_T a^2$.

Since edge safety factor $q_{95} \geq 3$ is strongly desirable for plasma stability and $q \sim a^2 B_T/(RI_p)$, keeping $q_{95} \simeq 3.3$ at similar shaping would require decreasing the major radius R.

The natural density scaling implies an (empirical) limit on the minimum magnetic field for a practical ignition experiment.

• Assuming that the Greenwald density limit for tokamak operation, $n \leq n_G = I_p / \pi a^2$ holds (and the earlier Murakami limit for ohmic plasmas, $n_M \sim B_T / (Rq_a) \sim J_{\phi}$), implies

$$rac{\pi C_N}{B_T} rac{\overline{n}_N}{\langle n_N
angle} \leq rac{\overline{n}_e}{n_G} \leq 1.$$

Then taking $\overline{C}_N = C_N \overline{n}_N / \langle n_N \rangle \simeq 1$ as a lower limit, based on the simulation results,

$$B_T^{MIN} \simeq \pi \overline{C}_N \simeq 3T.$$

• An adequate range of operation requires a smaller density $\overline{n}_N \leq 0.5 n_G$, or at least

$$B_T \geq 2B_T^{MIN} \simeq 6T.$$

• This is not an absolute limit on operation, but it becomes increasingly difficult and expensive to operate below it. The exact value depends on the assumptions made for determining n_N , in particular on confinement.

Conclusions

- A "natural density" for ignition can be defined as an idealized parameter for ignition of a clean plasma, using transport simulation.
- It predicts properties of actual ignition performance based on a small set of fundamental device properties (size, shape, field, current, heating power, etc), under limited assumptions on confinement and ignition path.
- A normalized natural density C_N , defined by $n_N = C_N I_p / B_T a^2$, measures the relative "size" of the density and current in an experiment, where $C_N \sim 1$ for current and density ramps of approximately the same length and $C_N > 1$ for ignition that requires substantial fuelling after the end of the current ramp. (Aspect ratio dependence not determined.) C_N is a useful parameter for 0D ignition studies.
- If the Greenwald density n_G poses an operational limit for fusion plasmas as it does for present ones, a minimum magnetic field is required for a practical ignition experiment.