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Importance of Disruptions, etc.

e Disruptions and their consequences significantly impact the
design and operation planning for DT-burning NSOs

e Plasmas with sufficient performance to achieve DT burn also
have enough thermal and magnetic energy to put in-vessel (PFC)
and torus vessel systems at risk from disruptions and/or
loss of vertical equilibrium control (VDE)

e Since exploration of DT burn physics will entail
‘first-time’ entry into a self-heated plasma operation
regime that lies near a number of MHD stability limits,
disruptions will be frequent (10%-30% of pulses)

e Time to recover wall condition after disruption can
adversely impact experimental program

e Time and cost to replace eroded PFCs and/or
other failed components will be large

e There are potential regulatory issues



Effects of Disruptions, VDEs, RAe-, etc.

e EM loading on toroidally and poloidally-conducting structures
— Toroidal and poloidal induced currents
— Local ‘loop’ currents (j x B torque)
— In-vessel ‘halo currents’ and forces
— Global vertical and lateral force on VV, etc.

e Thermal loading on PFCs, etc.
— Divertor targets
— First wall
— Ohmic heating of connections

e Erosion and/or structural damage of PFCs

e Redistribution of in-vessel material,
wall deconditioning



FIRE Disruption and Disruption-Related Design Basis Recommendations (cont’d)

Parameter

Value (Range)

Comment

Frequency

10% (10-30%) per pulse

30% for plasma development
< 10% for mature (repetitive) operation

Number (3,000 full 300 (900) 300 at full Wiy and Wnag, balance at < 0.5 Wiy and
performance attempts) full Wmag
Thermal energy 33 MJ For typical 200 MW plasma

Thermal quench

0.2 (0.1-0.5) ms

Single or multi-step thermal quench

duration

Fraction of Wih, to 80-100% By conduction to targets, up to 2:1 toroidal

divertor asymmetry

Fraction of Wih to FW | < 30% By radiation (to FW) or conduction (to baffle)
(baffle)

In-divertor partition 2:1-1:2 For SN plasmas. Significant uncertainty. No data for

(inside/outside)

DN plasmas

Poloidal localization in
divertor

3-x normal SOL; (1-x to
10-x)

Incident energy, with up to 2:1 toroidal asymmetry.
Plasma shielding and re-radiation will likely
redistribute in-divertor energy

Magnetic energy 35 (?) MJ For 6.5 MA, total out to VV

Current quench 6 (2-600) ms Duration =30 ms: more-severe VDE and halo
duration current

Maximum current 3 MA/ms May occur only during fastest part of current quench;
decay rate typical maximum rate ~1 MA/ms

Fraction of Wg to 80-100% By radiation, with poloidal peaking factor ~ 2

FW, by radiation

Fraction of Wmag to FW, [ 0-20% From VDE: depends on VDE evolution and in-

by localized conduction

vessel halo current. Hot-plasma VDEs may also
deposit ~0.2-1.0 Wyn on localized portion(s) of FW.
Toroidal alignment critical

Table Continues




FIRE Disruption and Disruption-Related Design Basis Recommendations (cont’d)

Parameter

Value (Range)

Comment

VDE frequency

TBD (??? 1% of pulses,
or 10% of
disruptions???)

Very uncertain. May be able to maintain vertical
position control after thermal quench. But
margin/noise sensitivity uncertain. Control failure
yields VDE or loss of after-thermal-quench control

Halo current fraction
Ih,max/1po

0.4 (0.01-0.50)

Highest value may apply (depends on passive
stabilizer configuration)

Toroidal peaking factor

2(L2< TPF < 4)

TPF up to 2 yields ‘sin@’ distribution; TPF > 2 yields
‘localized filament’

(|h,max/|p0)*TPF

< 0.50 (typical
maximum)

Data bound is < 0.75 (see text)

Runaway electron
current (following
disruption or fast
shutdown)

50% Ipp (0-50%)

Highly uncertain. Ira > 1 MA requires = 1 A seed
source. Not expected in thermal plasma, but pellet
shutdown may seed avalanche. MHD fluctuations
may offset part or all of avalanche growth.

Runaway energy

~15 MeV

Limited by knock-on avalanche

Localization of runaway
deposition

<1 m?

Poloidal localization to a ~0.1-m (poloidal) section of
the FW or divertor target expected; toroidal
localization depends on pfc and wall alignment to
toroidal field

e Basis: ITER EDA /EG and ITER Physics Basis, Chapter 3

e Lacks for FIRE: thermal quench data, DN data




Thermal Quench Duration Basis

Thermal quench delay or duration (ms)
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ITER Plasma DDD 86, Fig. 6.3.6; revised for FIRE 01.31.00
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Thermal Quench Energy Deposition

e ~80-100% Wih to active PFCs (divertor targets)

e ~3-x SOL expansion (1-x to 10-x); 0-30% to baffle
(depends on configuration)

e Up to 2: 1 toroidal peaking + MHD
e In/out split for SN ~1:1 (2.1 to 1:2); no DN data

e Up/down split for DN depends on symmetry;
design basis assumption 1.1 to 2:1 (CDA!)

e Combination of uncertainties yields
3-72 MJ/m2on divertor; ‘mean’ = ~20 MJ/m?2

e Lack of systematic TQ data and good energy accountability
for SN disruptions identified as R&D need by ITER EG;
FIRE needs data for DN and near-DN therrmal quench



Combination of TQ Basis Parameters
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Halo Current Magnitude
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Halo Current Asymmetry (TPF)
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Vertical and Lateral Forces (VV and In-VV)

e Maximum vertical force (Bt*Ih*2a0) < 32 MN (320 tonnes)
e Likely vertical force ~16 MN (160 tonnes)
e Lateral force = 1/3 Fz: ~6 MN (60 tonnes)

e Estimates are for 10 T and 50% halo current
(or 12 T and 40% halo current)

e Need Br(Z) calculation and TSC (distribution, dynamics)

e Localization, asymmetry in passive stabilizer(s),
effect of plasma ‘bridging’ to divertor?

e 3-D plasma model, detailed predictive basis lacking!



Runaway Electron Conversion

e Knock-on avalanche is possible following FIRE
disruption or VDE: growth rate is 1000 < yra(s-1) < 10000

e Conversion gain is low: only (!) 106 (cf 1019 for ITER)
e Need ~1 A of seed current to have RAe trouble

e Seed level in FIRE uncertain:
pellet ‘interchange’ mechanism a risk?

e MHD losses can offset avalanche growth:
what are fluctuation levels in
post-thermal-quench plasma?

< Runaway strike will be poloidally and toroidally localized.

Toroidal alignment is critical (RA SOL ~1 mm)
ITER calculations yield ~mm damage



Summary and Conclusions

e Disruption, halo current and RAe- characteristics have
been specified (based upon ITER Physics Basis);
VV and in-VVV response TBD

e Thermal quench data (SN) quality is poor; DN data
wholely lacking (R&D for C-Mod and DIII-D)

e Divertor plasma shielding and radiative energy
redistribution is critical divertor response issue

e Halo current magnitude and VV force estimated: need
TSC and toroidal asymmetry model (3-D plasma) for
details; passive stabilizer role and asymmetry needs

further physics R&D (ASDEX-U)

e Possibility of after-TQ VDE stabilization TBD

e Qutcome of RAe- uncertain (seed and MHD levels),
potential for serious in-vessel surface damage



