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Importance of Disruptions, etc.

• Disruptions and their consequences significantly impact the
design and operation planning for DT-burning NSOs

• Plasmas with sufficient performance to achieve DT burn also
have enough thermal and magnetic energy to put in-vessel (PFC)

and torus vessel systems at risk from disruptions and/or
loss of vertical equilibrium control (VDE)

• Since exploration of DT burn physics will entail
‘first-time’ entry into a self-heated plasma operation

regime that lies near a number of MHD stability limits,
disruptions will be frequent (10%-30% of pulses)

• Time to recover wall condition after disruption can
adversely impact experimental program

• Time and cost to replace eroded PFCs and/or
other failed components will be large

• There are potential regulatory issues



Effects of Disruptions, VDEs, RAe-, etc.

• EM loading on toroidally and poloidally-conducting structures
— Toroidal and poloidal induced currents

— Local ‘loop’ currents (j x B torque)
— In-vessel ‘halo currents’ and forces

— Global vertical and lateral force on VV, etc.

• Thermal loading on PFCs, etc.
— Divertor targets

— First wall
— Ohmic heating of connections

• Erosion and/or structural damage of PFCs

• Redistribution of in-vessel material,
wall deconditioning



FIRE Disruption and Disruption-Related Design Basis Recommendations (cont’d)

Parameter Value (Range) Comment
Frequency 10% (10-30%) per pulse 30% for plasma development

≤ 10% for mature (repetitive) operation
Number (3,000 full
performance attempts)

300 (900) 300 at full Wth and Wmag, balance at ≤ 0.5 Wth and
full Wmag

Thermal energy 33 MJ For typical 200 MW plasma
Thermal quench
duration

0.2 (0.1–0.5) ms Single or multi-step thermal quench

Fraction of Wth to
divertor

80–100% By conduction to targets, up to 2:1 toroidal
asymmetry

Fraction of Wth to FW
(baffle)

≤ 30% By radiation (to FW) or conduction (to baffle)

In-divertor partition
(inside/outside)

2:1 – 1:2 For SN plasmas. Significant uncertainty. No data for
DN plasmas

Poloidal localization in
divertor

3-x normal SOL; (1-x to
10-x)

Incident energy, with up to 2:1 toroidal asymmetry.
Plasma shielding and re-radiation will likely
redistribute in-divertor energy

Magnetic energy 35 (?) MJ For 6.5 MA, total out to VV
Current quench
duration

6 (2-600) ms Duration ≥30 ms: more-severe VDE and halo
current

Maximum current
decay rate

3 MA/ms May occur only during fastest part of current quench;
typical maximum rate ~1 MA/ms

Fraction of Wmag to
FW, by radiation

80–100% By radiation, with poloidal peaking factor ~ 2

Fraction of Wmag to FW,
by localized conduction

0-20% From VDE: depends on VDE evolution and in-
vessel halo current. Hot-plasma VDEs may also
deposit  ~0.2-1.0 Wth on localized portion(s) of FW.
Toroidal alignment critical

Table Continues



FIRE Disruption and Disruption-Related Design Basis Recommendations (cont’d)
Parameter Value (Range) Comment
VDE frequency TBD (??? 1% of pulses,

or 10% of
disruptions???)

Very uncertain. May be able to maintain vertical
position control after thermal quench. But
margin/noise sensitivity uncertain. Control failure
yields VDE or loss of after-thermal-quench control

Halo current fraction
Ih,max/Ip0

0.4 (0.01-0.50) Highest value may apply (depends on passive
stabilizer configuration)

Toroidal peaking factor 2 (1.2 ≤ TPF ≤ 4) TPF up to 2 yields ‘sinφ’ distribution; TPF > 2 yields
‘localized filament’

(Ih,max/Ip0)*TPF ≤ 0.50 (typical
maximum)

Data bound is ≤ 0.75 (see text)

Runaway electron
current (following
disruption or fast
shutdown)

50% Ip (0-50%) Highly uncertain. IRA > 1 MA requires ≥ 1 A seed
source. Not expected in thermal plasma, but pellet
shutdown may seed avalanche. MHD fluctuations
may offset part or all of avalanche growth.

Runaway energy ~15 MeV Limited by knock-on avalanche
Localization of runaway
deposition

≤ 1 m2 Poloidal localization to a ~0.1-m (poloidal) section of
the FW or divertor target expected; toroidal
localization depends on pfc and wall alignment to
toroidal field

• Basis: ITER EDA /EG and ITER Physics Basis, Chapter 3

• Lacks for FIRE: thermal quench data, DN data



Thermal Quench Duration Basis
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Fig. 1. Thermal quench data with application to FIRE
(empirical scaling, from ITER Physics Basis, Chapter 3)



Thermal Quench Energy Deposition

• ~80-100% Wth to active PFCs (divertor targets)

• ~3-x SOL expansion (1-x to 10-x); 0-30% to baffle
(depends on configuration)

• Up to 2: 1 toroidal peaking + MHD

• In/out split for SN ~1:1 (2:1 to 1:2); no DN data

• Up/down split for DN depends on symmetry;
design basis assumption 1:1 to 2:1 (CDA!)

• Combination of uncertainties yields
3-72 MJ/m2 on divertor; ‘mean’ = ~20 MJ/m2

• Lack of systematic TQ data and good energy accountability
for SN disruptions identified as R&D need by ITER EG;
FIRE needs data for DN and near-DN therrmal quench



Combination of TQ Basis Parameters
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Current Quench Basis
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Halo Current Magnitude
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Halo Current Asymmetry (TPF)
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Halo Current Asymmetry (TPF)
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Vertical and Lateral Forces (VV and In-VV)

• Maximum vertical force (BT*Ih*2ao) ≤ 32 MN (320 tonnes)

• Likely vertical force ~16 MN (160 tonnes)

• Lateral force = 1/3 Fz: ~6 MN (60 tonnes)

• Estimates are for 10 T and 50% halo current
(or 12 T and 40% halo current)

• Need BR(Z) calculation and TSC (distribution, dynamics)

• Localization, asymmetry in passive stabilizer(s),
effect of plasma ‘bridging’ to divertor?

• 3-D plasma model, detailed predictive basis lacking!



Runaway Electron Conversion

• Knock-on avalanche is possible following FIRE
disruption or VDE: growth rate is 1000 ≤ γRA(s-1) ≤ 10000

• Conversion gain is low: only (!) 106 (cf 1019 for ITER)

• Need ~1 A of seed current to have RAe trouble

• Seed level in FIRE uncertain:
pellet ‘interchange’ mechanism a risk?

• MHD losses can offset avalanche growth:
what are fluctuation levels in

post-thermal-quench plasma?

• Runaway strike will be poloidally and toroidally localized.
Toroidal alignment is critical (RA SOL ~1 mm)

ITER calculations yield ~mm damage



Summary and Conclusions

• Disruption, halo current and RAe- characteristics have
been specified (based upon ITER Physics Basis);

VV and in-VV response TBD

• Thermal quench data (SN) quality is poor; DN data
wholely lacking (R&D for C-Mod and DIII-D)

• Divertor plasma shielding and radiative energy
redistribution is critical divertor response issue

• Halo current magnitude and VV force estimated: need
TSC and toroidal asymmetry model (3-D plasma) for
details; passive stabilizer role and asymmetry needs

further physics R&D (ASDEX-U)

• Possibility of after-TQ VDE stabilization TBD

• Outcome of RAe- uncertain (seed and MHD levels);
potential for serious in-vessel surface damage


