Disruption, VDE and Runaway Electron Conversion: Physics Basis and Issues for FIRE

Prepared and Presented by

John Wesley General Atomics

Workshop on Physics Issues for FIRE Princeton Plasma Physics Laboratory 1-3 May 2000

Content

- Background
- Disruption Characteristics:
 - Thermal quench
 - Current quench
 - VDEs and Halo Currents
- Runaway Electron Conversion
- Open Issues and R&D Needs
- Summary and Recommendations

Importance of Disruptions, etc.

- Disruptions and their consequences significantly impact the design and operation planning for DT-burning NSOs
- Plasmas with sufficient performance to achieve DT burn also have enough thermal and magnetic energy to put in-vessel (PFC) and torus vessel systems at risk from disruptions and/or loss of vertical equilibrium control (VDE)
 - Since exploration of DT burn physics will entail 'first-time' entry into a self-heated plasma operation regime that lies near a number of MHD stability limits, disruptions will be frequent (10%-30% of pulses)
 - Time to recover wall condition after disruption can adversely impact experimental program
 - Time and cost to replace eroded PFCs and/or other failed components will be large
 - There are potential regulatory issues

Effects of Disruptions, VDEs, RAe-, etc.

- EM loading on toroidally and poloidally-conducting structures
 - Toroidal and poloidal induced currents
 - Local 'loop' currents (j x B torque)
 - In-vessel 'halo currents' and forces
 - Global vertical and lateral force on VV, etc.
 - Thermal loading on PFCs, etc.
 - Divertor targets
 - First wall
 - Ohmic heating of connections
 - Erosion and/or structural damage of PFCs
 - Redistribution of in-vessel material, wall deconditioning

FIRE Disruption and Disruption-Related Design Basis Recommendations (cont'd)

Parameter	Value (Range)	Comment
Frequency	10% (10-30%) per pulse	30% for plasma development
		≤ 10% for mature (repetitive) operation
Number (3,000 full	300 (900)	300 at full W_{th} and W_{mag} , balance at $\leq 0.5 W_{th}$ and
performance attempts)		full W _{mag}
Thermal energy	33 MJ	For typical 200 MW plasma
Thermal quench	0.2 (0.1–0.5) ms	Single or multi-step thermal quench
duration		
Fraction of W _{th} to	80-100%	By conduction to targets, up to 2:1 toroidal
divertor		asymmetry
Fraction of W _{th} to FW	≤ 30%	By radiation (to FW) or conduction (to baffle)
(baffle)		
In-divertor partition	2:1 - 1:2	For SN plasmas. Significant uncertainty. No data for
(inside/outside)		DN plasmas
Poloidal localization in	3-x normal SOL; (1-x to	
divertor	10-x)	Plasma shielding and re-radiation will likely
		redistribute in-divertor energy
Magnetic energy	35 (?) MJ	For 6.5 MA, total out to VV
Current quench	6 (2-600) ms	Duration ≥30 ms: more-severe VDE and halo
duration		current
Maximum current	3 MA/ms	May occur only during fastest part of current quench;
decay rate		typical maximum rate ~1 MA/ms
Fraction of W _{mag} to	80-100%	By radiation, with poloidal peaking factor ~ 2
FW, by radiation		
Fraction of W _{mag} to FW,	0-20%	From VDE: depends on VDE evolution and in-
by localized conduction		vessel halo current. Hot-plasma VDEs may also
		deposit \sim 0.2-1.0 W _{th} on localized portion(s) of FW.
		Toroidal alignment critical

Table Continues

FIRE Disruption and Disruption-Related Design Basis Recommendations (cont'd)

Parameter	Value (Range)	Comment
VDE frequency	TBD (??? 1% of pulses,	
	or 10% of	position control after thermal quench. But
	disruptions???)	margin/noise sensitivity uncertain. Control failure
		yields VDE or loss of after-thermal-quench control
Halo current fraction	0.4 (0.01-0.50)	Highest value may apply (depends on passive
$I_{h,max}/I_{p0}$		stabilizer configuration)
Toroidal peaking factor	$2 (1.2 \le TPF \le 4)$	TPF up to 2 yields 'sino' distribution; TPF > 2 yields
		'localized filament'
$(I_{h,max}/I_{p0})*TPF$	≤ 0.50 (typical	Data bound is ≤ 0.75 (see text)
•	maximum)	
Runaway electron	50% I _p (0-50%)	Highly uncertain. I _{RA} > 1 MA requires ≥ 1 A seed
current (following	•	source. Not expected in thermal plasma, but pellet
disruption or fast		shutdown may seed avalanche. MHD fluctuations
shutdown)		may offset part or all of avalanche growth.
Runaway energy	~15 MeV	Limited by knock-on avalanche
Localization of runaway	≤ 1 m ²	Poloidal localization to a ~0.1-m (poloidal) section of
deposition		the FW or divertor target expected; toroidal
		localization depends on pfc and wall alignment to
		toroidal field

- Basis: ITER EDA /EG and ITER Physics Basis, Chapter 3
 - Lacks for FIRE: thermal quench data, DN data

Thermal Quench Duration Basis

Fig. 1. Thermal quench data with application to FIRE (empirical scaling, from *ITER Physics Basis*, Chapter 3)

Thermal Quench Energy Deposition

- ~80-100% Wth to active PFCs (divertor targets)
- ~3-x SOL expansion (1-x to 10-x); 0-30% to baffle (depends on configuration)
 - Up to 2: 1 toroidal peaking + MHD
- In/out split for SN ~1:1 (2:1 to 1:2); no DN data
- Up/down split for DN depends on symmetry; design basis assumption 1:1 to 2:1 (CDA!)
 - Combination of uncertainties yields $3-72 \text{ MJ/m}^2$ on divertor; 'mean' = $\sim 20 \text{ MJ/m}^2$
- Lack of systematic TQ data and good energy accountability for SN disruptions identified as R&D need by ITER EG; FIRE needs data for DN and near-DN therrmal quench

Combination of TQ Basis Parameters

Fig. 3. Current quench database (various tokamaks), with contours of corresponding electron temperature superposed (calculated per Ohmic heating/radiation loss power balance model)

Halo Current Magnitude

Fig. 6. Peak total halo current $(I_{h,max})$ versus pre-disruption plasma current (I_{p0}) for disruptions in elongated tokamaks. For plasmas with vertical elongation $1.5 \le \kappa_x \le 2.0$, where κ_x is the elongation at the separatrix.

Halo Current Asymmetry (TPF)

Fig. 9a. Toroidal peaking of halo currents in tokamaks, for plasmas with $1.5 \le \kappa_X \le 2$. High peaking factors occur only at low halo current fraction. The hyperbolic curves show limiting bounds for the data. Bounds on the normalized maximum halo current at $q_{95} = 3$ derived from the data in Fig. 3 are also shown.

Halo Current Asymmetry (TPF)

Fig. 9b. Halo current database, selected for $1.5 \le \kappa_x \le 2.0$. Recent data reported by JET and JT-60U added. The shaded $I_{h,max}/I_{p0}$ vs. TPF domain shows the loading condition envelope established for ITER in-vessel and vessel component design for so-called Category I and II loading conditions (routine/normally-expected events)

Vertical and Lateral Forces (VV and In-VV)

- Maximum vertical force $(B_T^*I_h^*2a_0) \le 32$ MN (320 tonnes)
 - Likely vertical force ~16 MN (160 tonnes)
 - Lateral force = 1/3 F_z: ~ 6 MN (60 tonnes)
 - Estimates are for 10 T and 50% halo current (or 12 T and 40% halo current)
- Need $B_R(Z)$ calculation and TSC (distribution, dynamics)
 - Localization, asymmetry in passive stabilizer(s), effect of plasma 'bridging' to divertor?
 - 3-D plasma model, detailed predictive basis lacking!

Runaway Electron Conversion

- Knock-on avalanche is possible following FIRE disruption or VDE: growth rate is $1000 \le \gamma_{RA}(s^{-1}) \le 10000$
 - Conversion gain is low: only (!) 106 (cf 1019 for ITER)
 - Need ~1 A of seed current to have RAe trouble
 - Seed level in FIRE uncertain: pellet 'interchange' mechanism a risk?
 - MHD losses can offset avalanche growth: what are fluctuation levels in post-thermal-quench plasma?
- Runaway strike will be poloidally and toroidally localized.
 Toroidal alignment is critical (RA SOL ~1 mm)
 ITER calculations yield ~mm damage

Summary and Conclusions

- Disruption, halo current and RAe- characteristics have been specified (based upon ITER Physics Basis);
 VV and in-VV response TBD
 - Thermal quench data (SN) quality is poor; DN data wholely lacking (R&D for C-Mod and DIII-D)
 - Divertor plasma shielding and radiative energy redistribution is critical divertor response issue
- Halo current magnitude and VV force estimated: need TSC and toroidal asymmetry model (3-D plasma) for details; passive stabilizer role and asymmetry needs further physics R&D (ASDEX-U)
 - Possibility of after-TQ VDE stabilization TBD
 - Outcome of RAe- uncertain (seed and MHD levels); potential for serious in-vessel surface damage