OVERVIEW OF THE ALCATOR C-MoD PROGRAM

IAEA-FEC November, 2004

Alcator Team

Presented by Martin Greenwald

MIT — Plasma Science & Fusion Center
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OUTLINE ;(\}Mod

e C-Mod is compact, high field,
high density, high power
density

eB;to 8T, Ipto 2 MA

® PICRH to 6 MW

e Equilibrated ions, electrons
e No core momentum source

e No core particle source

e SOL Turbulence and Transport

e Self Generated Flows and
Momentum Transport in the Core

and Edge
e H-mode Threshold
e Control of ITBs
¢ ICRF — Mode Conversion
e Locked Modes Disruptions

e LHCD and Other Near-Term Plans




Alcalor
EDGE TURBULENCE DOMINATED BY LARGE STRUCTURES f\)}éfod
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e Edge turbulence visualized with high-speed camera (250,000 fps).

e Large, field aligned structures, “blobs”, account for most
turbulence and transport.

e Analysis shows these structures move poloidally inside separatrix
and accelerate radially outside.




POLOIDAL ASYMMETRIES IN SOL PROFILES AND FLUCTUATIONS

SUGGEST THAT HIGH-FIELD SIDE IS POPULATED VIA FLOWS FROM

SN plasmas have the
same pressure on
both sides.

Fluctuations are
always much lower on
the high-field side
(ballooning).

DN plasmas have
very low pressure on
the high-field side.

The self-generated
“symmetrizing” flows
are observed (M ~ 1)

Low-FIELD SIDE
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STRONG TOROIDAL ROTATION IN ABSENCE OF EXTERNAL TORQUE

Alcator
|S THERE A CONNECTION TO BOUNDARY PHYSICS? f}uﬂod
TO REVIEW Rotation Increases with Pressure
14_"'|"'|"'|"'|"'|"'|"'
e Strong self-generated toroidal 122
flows - % ICRF S
B - X ]
e Rotation increases in co-current = —. 10 ® Ohmic Xy X
~ I X X
direction as plasma pressure e gl * x;%iK ]
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increases S x%% KK
. S 6 oK X ;
e Decreases with Ip < [ K X _
4 B A %éé i
e Mach numbers up to 0.2-0.3 : ﬁ% X :
e Similar trends seen for RF and 2 :_' _
OH heated plasmas — not an RF Ol .. v
or fast particle effect 0 20 40 60 80 100 120 140
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MOMENTUM IS TRANSPORTED INWARD FROM OUTER REGIONS C-Mod

e Evolution of rotation profiles
following transitions can be
modeled to yield transport
coefficients

o EDA — diffusive

o ELMfree — large
inward convection as
well

e Important role for boundary

e In all cases, transport is
much faster than neo-
classical

ELM-free
' D=0.4 m?/s v=10 m/s

EDA D=0.05 m%/s v=0
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SELF-GENERATED CORE AND EDGE FLOWS EXTREMELY

SENSITIVE TO MAGNETIC TOPOLOGY
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Toroidal Velocity (km s-1)
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SSEP - Distance Between Primary and
Secondary Separatrix (mm)

e Scan separation between
primary and secondary
separatrix (SSEP)

= SSEP <0 Lower null

= SSEP > 0 Upper null

e Over a few mm, rotation shifts in
counter direction by 20-30 km/s

e Scale comparable to SOL size.
e Links core and edge rotation

e Double null balance is critical




OBSERVATIONS OF SELF-GENERATED FLOWS AND INWARD

MOMENTUM TRANSPORT LEAD TO A NOVEL HYPOTHESIS FOR VB
DRIFT INFLUENCE ON L-H THRESHOLD

Alcator

i%MOd

e Power/temperature threshold is 2x
higher for unfavorable topology - VB
ion drift away from SN.

e Edge rotation is sum of the two
terms just described.

o Topology dependent (from
symmetrizing of ballooning
transport) — more counter for
unfavorable geometry.

o Pressure (power) dependent —
Increases in co-current direction

e For unfavorable topology, discharge
begins “farther” from threshold state.
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CORRELATION BETWEEN TOPOLOGY, ROTATION AND THRESHOLD 'Alcator

IS STRONG ;Cjﬁod

o[ ® T
e A few mm change in SSEP 10 LSN % DN 1
result in 0™ order changes ¢ ’0,
in rotation and threshold. - 201 « i
F= .
£ -30r *o.?  USNx -
e Comparable in distance to — [ CoreV$ }’.’ § 1
SOL width!! 407" before RF .
'50=========i=========i======:::::::::::::
e SOL apparently provides 4'_ II;;I-‘IN'I(;?reshold o a& |
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for core rotation. E i 8
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VB EFFECT IS ONLY PART OF THE L-H THRESHOLD STORY
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L-H THRESHOLD COMPARED TO
ANALYTIC THEORY
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e Simulations: suppression of
drift-Alfven turbulence via
zonal flows. (Rogers 1998)

e Guzdar (PRL 2002) derives
analytic formula.
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e Splits difference between
favorable and unfavorable
topologies.
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ITB STUDIES HAVE FOCUSED ON BARRIER CONTROL

Alcator

j(}Mod’

e Barriers formed in C-Mod with off-
axis ICRF heating.

e Steep density profiles, with ygrr
reduced to ion neoclassical levels
across entire core.

e Application of on-axis power
arrests density peaking and
allows control of particle transport
(impurity accumulation).

e Barrier foot position is not linked
to RF resonance location (or
whether resonance is on low or
high-field side).
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BARRIER FOOT LOCATION DEPENDS MAINLY ON Bt j(yﬂod

Barrier position can be
varied from r/a ~ 0.3-0.6

Strongest scaling is with
Br.

Weaker scaling seen

Barrier foot location at
qy~1.1-1.35

Magnetic shear may be
the critical parameter?
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PICTURE OF CONTROL MECHANISMS EMERGING FROM GYROKINETIC  /Alcator
SIMULATIONS j(yﬂod

L—Mode H ITB Controlled ITB

Off-axis heating flattens Te,

1.6¢
1 4 £ ne(0)/<ne>

begins to stabilize ITG.

With reduced diffusivity, Ware

pinch causes density to peak.
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Alcator
FLUCTUATIONS SEEN WITH PCI MAY SUPPORT ITB SCENARIO j%MDd

10°

e PCI has very high S/N,

—— At Transition

dynamic range, wide 10" Fully developed ITB
bandwidth (to 5 MHz)
— 10°
| E
e Fluctuations at kps ~ 0.3 - 1.0 g
o
increase as barrier develops g
< 10’ m..,m
e TEM? RN,\
10°
e Future work will help localize
10° :
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Frequency [MHz]

fluctuations and extend k

range.
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MODE CONVERSION ICRF — FOR LOCALIZED HEATING, CURRENT C-Mod
C-Mo

DRIVE, FLOW DRIVE

Power Deposition
Measurements Validate

Simulations of Mode [ B %_ Experimental :
rq'ﬁl

(o
Ln

Conversion Process B

3
-
LI

_ - _ '. —— TORIC EH
Off-axis deposition with
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i
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Total efficiency @

o Experiment 20%

o TORIC 18%




ICRF MODE CONVERSION PROCESS STUDIED IN DETAIL WITH
FLUCTUATION DIAGNOSTIC AND ADVANCED SIMULATION
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e Parallel version of TORIC with
n, = 240, n,, = 255.

e Resolves details of MC process.
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e D/He3 at 50 MHz

e All three waves - FW, IBW, ICW —
seen in experiment with phase
contrast imaging diagnostic (PCI).
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LOCKED MODE THRESHOLD HAS WEAK SIZE SCALING )Cjﬁ'lod
102 T
- A Compass—D ] . .
: 0 JET : Set of external non-axisymmetric
O - ] .
e C-Mod control coils installed.
1073 . . C e .
: Allow determination of intrinsic
Iﬁ error field and mode locking
104k threshold.
: | : Dimensionless identity experiments
i ITER field ] performed w/JET, DIII-D.
10- " " " 1 " " " 1 " " " 1 N " "
0 2 4 6 8

Weak size scaling found.

Locked modes should not be worse

e C-Mod, DIII-D, JET data in same
range for n/n vt

* 5x range in machine size. Coils allowed suppression of

locked modes, 2 MA operation.

for ITER than for current machines

Hutchinson EX/P5-6



SIGNIFICANT DROP IN HALO CURRENT MAGNITUDE AND ASYMMETRY

WITH MODIFIED DIVERTOR GEOMETRY )gc;,];?
= i @ NewDivertor S ]
s 0.3F @ O0id Divertor ® o ]
e Previous work found that halo = } e ]
currents scaled with Ip/ges With E) 05
strong poloidal asymmetry. o
e After divertor modification, ;8 0.1
same scaling observed but §
with lower magnitude (1/2) and % 0.0f
less asymmetry. 0.0
e Drop in halo current may be
explained by change in | . .
plasma/divertor contact during _ool 15 ?
VDE. :
—0.4] 1 12
e Nota bene for future machines % g
-0.67 1 1+




FUTURE WORK: EMPHASIZES AT RESEARCH AND SUPPORT FOR "A’C: tor
BURNING PLASMAS (ITER) IN REACTOR RELEVANT REGIMES f)""’d

Reactor relevant conditions

o lons and electrons coupled; T; ~ T,

O lpuLse > TLR

o No core momentum or particle sources.
Enabled by LHCD

o 3 MW source at 4.6 GHz.

o4 x 24 waveguide array — realtime phase control
Cryopump for density control

Prototype tungsten brush divertor tiles to help
manage heat load.

Long pulse DNB.




The End





