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Outline and Conclusions

• Turbulence spreading into linearly stable zone is studied

using global gyrokinetic particle simulations and theory.

• Motivation from experiments to study spreading of

Edge Turbulence into Core.

• Results

– Fluctuation amplitude in the linearly stable zone can

be significant due to turbulence spreading.

– Sometimes Spreading of Edge Turbulence into Core

can exceed local turbulence in connection region.

– It is likely to affect “the edge boundary conditions”

used in core modeling, and predictions of

pedestal extent.



Determination of Fluctuation Amplitude

γ = γlin − k2⊥Dturb → 0

• Nonlinear coupling induced dissipation leads to saturation
(B. Kadomtsev ’65)
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• “Local Balance in Space” for a mode k
• “Conceptual Foundation of Most Transport Models”
• Missing:

– Meso-scale Phenomena: Barrier Dynamics, Avalanches,...
– Anomalous transport in the region γlin < 0
– Turbulence Spreading into Less Unstable Zone



Excitation of Linearly Damped Modes

• Nonlinear Saturation from Balance between:

γlin vs. Spectral Transfer from Nonlinear
Mode Coupling
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→ Non-zero Amplitude for Linearly Damped Modes

Sagdeev and Galeev, Nonlinear Plasma Theory (1969)

Gang-Diamond-Rosenbluth, Phys. Fluids B 3, 68 (1991)

Hahm-Tang, Phys. Fluids B 3, 989 (1991)

Horton, Rev. Mod. Phys. (2000) for more references

⇒ Lin et al., IAEA/TH/8-4 (2004), this Friday



Nonlinear Coupling Leads To Radial Diffusion

• Nonlinear interactions of modes must spread fluctuation

energy in radius due to:

i) ikx→ ∂
∂x

ii) poloidal harmonics at q(r) = m/n

iii) with different radial extents

iv) Numerical Studies with both Linear Toroidal Coupling

and Nonlinear Coupling

[Garbet-Laurent-Samain-Chinardet, NF 1994]

• E × B nonlinearity → “local turbulent damping”

and “radial diffusion”:

(k × k′ · b)2Rk,k′IkIk′ → − ∂

∂x
Dr(I)

∂

∂x
I + k2

θ Dθ(I)I.

[eg., Kim-Diamond-Malkov-Hahm et al., NF 2003]



Simple Model of Turbulence Spreading

[Hahm, Diamond, Lin, Itoh, Itoh, PPCF 46, A323 ’04]

∂
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I = γ(x)I − αI2 + χ0
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• γ(x) is “local” growth rate, α: a local nonlinear coupling

• χ0I = χi is a turbulent diffusivity

• I: turbulence intensity, Σk Modes ∼ Σ Eddys

+

1t
I

lin
γ

t2

-
∂
∂t

∫ x+∆
x−∆ dx′I(x′, t) ∼ χ0I ∂

∂xI]x+∆
x−∆ + ...

• Profile of Fluctuation Intensity crucial

to its Spatio-temporal Evolution



Turbulence Spreading after Local Saturation
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From Gyrokinetic (GTC)
simulations, turbulence
spreads radially (∼ 25ρi)
into the linearly stable zone,
causing deviation from
GyroBohm scaling.
[Lin et al., Phys. Rev. Lett. (2002)]
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Propagation and Saturation of Fluctuation Front

• The nonlinear diffusion, in the absence of dissipation,

will make the front propagate beyond x0 indefinitely.
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Front propagation stops when

radial flux due to propagation

is balanced by dissipation:

Tprop � ∆/Ux ⇐⇒ Tdamp ∼ (|γ′|∆)−1

I(x,t)

xo x
0

x
0
 + 

dissipation

growth due
to spreading

Δ

∆2 � 12χ0I0
|γ′|x0

, using the values from simulation → ∆ � 18ρi

From GK simulation for a profile considered: ∆ � 25ρi



Connection Region between Edge and Core

TFTR         Fonck, Mazzucato, et al. Vermare, et al., 2004

• Profile of Turbulence Intensity crucial in turbulence

spreading: ΓI = −χ(I) ∂
∂xI

• Core confinement improvement

after L-H transition:

JET, ASDEX, DIII-D, C-mod,...

• Connection Region:

Local Turbulence + Incoming Edge Turbulence



Turbulence Spreading from Edge to Stable Core

• Nonlinear GTC Simulations

of Ion Temperature Gradient

Turbulence:
R
LT

= 5.3 at core
(within Dimits shift regime)
R
LT

= 10.6 at edge:

• Initial Growth at Edge
→ Penetration into stable Core
(Lin-Hahm-Diamond,

PRL ’02, PPCF, PoP ’04)

• Saturation Level at Core:
eδφ
Te

∼ 3.6ρi
a

→ ∇ · ΓI >> γlocalI
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Spreading in Unstable Zone

[Gurcan, Diamond, Hahm, and Lin, Submitted to Phys. Plasmas ’04]

∂
∂tI = γ(x)I − αI2 + χ0
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• When γ(x), α, χ0 are constant in radius, the Fisher-
Kolmogorov equation with nonlinear diffusion exhibits
“propagating front” solutions.

• The spreading can beat local growth and a solution
exhibits ballistic propagation d(t) = Uxt with

Ux = γ1/2×(
χ0I

2
)1/2

• Ux ∼ geometric mean of “local growth” and “turbulent
diffusion”, faster than transport time scale.



Edge Turbulence Spreading to Unstable Core

• Nonlinear Gyrokinetic

Simulations of Ion Temperature

Gradient Turbulence:
R
LT

= 6.9 at core (Cyclone value)
R
LT

= 13.8 at edge

• Initial Growth at Edge followed

by Ballistic Front Propagation

into Core

• Saturation Level at Core

∼ 2× Core (only) Result

∇ · ΓI ∼ γlocalI
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Front Propagation Speed Increases with R/LT
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• From Simulation, Ux and I increase with ( R
LT

)

• Nonlinear Diffusion Model: Ux ∝ (γI)1/2

by [Gurcan-Diamond-Hahm-Lin, submitted to PoP ’04]
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Numerical Solution of the Nonlinear Theoretical Model Equation
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• Toroidal Linear Coupling dominant Regime: Ux ∼ ρi
RvT i

by [Garbet-Laurent-Samain-Chinardet, NF ’94]

• Four Wave Model: Complex Bursty Spreading
by [Zonca-White-Chen, PoP ’04]



Summary

• Turbulence spreading has been widely observed in global

gyrokinetic particle simulations: It can be responsible for

deviation of transport scaling from GyroBohm.

• Fluctuation Intensity in the linearly stable region can be

significant due to turbulence spreading.

• Sometimes Spreading of Edge Turbulence into Core

can exceed local turbulence in connection region.

• It is likely to affect “the edge boundary conditions” used

in core modeling, and predictions of pedestal extent.

UCIrvine



Turbulence Spreading has been widely observed

• From Most Global Gyrokinetic/Gyrofluid Simulations:

– X. Garbet et al., NF ’94 (Mode-coupling in Torus)

– R. Sydora et al., PPCF ’96 (Torus with Zonal Flows)

– Y. Kishimoto et al., PoP ’96 (Torus with Zonal Flows)

– S. Parker et al., PoP ’96 (Torus without Zonal Flows)

– W.W. Lee et al., PoP ’97 (Torus without Zonal Flows)

– Y. Idomura et al., PoP ’00 (Sheared Slab with Zonal

Flows)

– Z. Lin et al., PRL ’02 (Torus with Zonal Flows)

– L. Villard et al., IAEA ’02 (Cylinder with Zonal Flows)

– R. Waltz et al., PoP ’02 (Torus with Zonal Flows)

– Y. Kishimoto et al., H-mode ’03 (Sheared Slab with

ZF)

• Neither Zonal Flows nor Toroidal Coupling necessary for

Turbulence Spreading.



Anomalous Transport where γlin < 0

Core of Reversed Shear Plasmas where profiles are nearly

flat (JT-60U, TFTR, DIII-D,...)
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[Rewoldt et al., NF, ʻ02]

FULL code
(with rotation)
k         = 0.53θ ρ

i

→ Nonlinearly Unstable?

(Self-sustained Turbulence (B. Scott))

→ Spreading from the Linearly Unstable Zone



Distinction between “Core” and “Edge” blurred

• Researchers have frequently divided the tokamak into three
zones — a central sawtoothing zone, a middle ’confine-
ment zone’, and an edge zone...
Goldston-U.S.A. Kyoto IAEA (1986)

• the edge..., often used as a boundary condition for core
transport modeling
V. Parail, Plasma Phys. Control. Fusion, 44, A63 (2002)

• ∂
∂xγ(x) ∼ ∂2

∂x2P : large at the top of pedestal

C-mod,
Hughes
et al.,
2002



Long Term Behavior: Sub-Diffusion

• Self-similar Variable: 	(t)2 ∼ χ0Iβt

• I(t)	(t) = I(0)	(0) ≡ ε, up to dissipation

• 	(t) ∼ [χ0εβt]
1

2+β

∼ t1/3: Weak Turbulence

∼ t2/5: Strong Turbulence

• Previous numerical mode coupling study:

X. Garbet et al., NF 1994

Linear toroidal coupling usually dominates ∼ t1:

convective

Without linear toroidal mode coupling ∼ t1/2:

diffusive



Short Term Behavior: Ballistic Propagation

• xfront = (x3
0 + 6εχ0t)1/3

• Ux = d
dtxfront

∼ 2εχ0/x2
0: for small t (consequence of ∆ << x0)

∼ t−2/3: for large t (sub-diffusion)

Note: ε ∝ I, turbulence intensity

• Scaling of Ux drastically different from Vgr of linear drift

(ITG) wave

→ contrast our theory from others relying

on linear dispersion

[eg., Garbet et al., PoP ’96; Zonca et al., PoP ’04]



Simple theory captures ρ∗ dependence of spreading

I0(x, t) =
ε

(6εχ0t + W3)1/3

(
1 − (x − xi)

2

(6εχ0t + W3)2/3

)

×H
(
(6εχ0t + W3)1/3 − |x − xi|

)

I
0
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Spreading of Self-sustained Turbulence

[Itoh, Itoh, Hahm, and Diamond, submitted to J. Phys. Soc. Jpn. ’04]

∂

∂t
I = ΓNL(I, x)I + χ0

∂

∂x
(I

∂

∂x
I)

Model self-sustained sub-critical turbulence [eg., B. Scott,

PRL ’90]:

ΓNL(I, x) > 0 for Icrit < I < γ0
α ,

ΓNL(I, x) = 0 for I < Icrit, I > γ0
α , at |x| < L, and

ΓNL(I, x) < 0 at |x| > L according to local linear and non-

linear damping

Due to turbulence spreading, there exists a minimum size

system (L) that can sustain the self-sustained turbulence


