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●  Focus is on modification of the present successful scenario with 100% 
 noninductively driven current

●  Goal of a high fraction of bootstrap current leads to exploration of methods 
 to maximize qmin βN

●  Without modification of the pressure profile, the maximum achieved βN decreases 
 with increasing qmin

●  With a broadened pressure profile, qmin βN is maximized at the highest 
 qmin tested

●  Increases in beta limits with elongation and triangularity motivate double-null 
 divertor operation

— Modeling indicates that βN = 5 should be possible

295-04JF/jy

STEADY-STATE ADVANCED TOKAMAK OPERATION AT HIGH BETA
IN DIII–D IS BEST ACHIEVED IN A STRONGLY-SHAPED DISCHARGE

WITH A BROAD PRESSURE PROFILE
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●  Steady state: requires a large bootstrap current fraction
 fBS  ∝ βp  ∝  qβN

●  Motivates operation with elevated q across the entire profile

●  For high fusion gain  ∝  βτE  ∝  βNH89/q95, increase qmin rather than q95

●  Highest possible βN to maximize fusion gain and fBS

●  Off-axis electron cyclotron current drive (ECCD) used to regulate current profile

●  Divertor exhaust pumping to control H–mode density

— Efficiency increases with βe

— For relevant collisionality and efficient ECCD
— Presently in DIII–D, this requires an upper single-null divertor shape

295-04JF/jy

BALANCING THE REQUIREMENTS FOR STEADY-STATE 
OPERATION AND HIGH FUSION GAIN LEADS 

TO A SCENARIO WITH HIGH qmin βN
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SCALING WITH qmin



●  Increased Te in H-mode slows rate of 
 current penetration

●  1.5 < qmin < 3, q95 ≈ 5

●  Two examples, qmin ≈ 2.5, βN = 2.7 
 and qmin ≈ 1.7, βN = 3.2 run without 
 significant MHD for discharge duration

295-04JF/jy

THE q PROFILE IS VARIED BY MODIFYING THE 
DISCHARGE FORMATION OR DELAYING THE HIGH BETA PHASE
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●  For βN above the no-wall limit, the 
 drag on toroidal rotation is enhanced 
 because of the plasma response to 
 the nonaxisymmetric fields

●  Rotation decreases significantly
 to below the critical level for n = 1 
 resistive wall mode stabilization

295-04JF/jy

THE NO-WALL βN LIMIT IS MEASURED BY MONITORING 
STABILITY AS THE CORRECTING CURRENT 

FOR NONAXISYMMETRIC FIELDS IS REMOVED
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●  Trend is the same for the n = 1 
 no-wall stability limit calculated 
 for model equilibria

●  High βN for the full DIII–D discharge 
 duration without MHD is limited 
 to 10% – 30% above measured 
 no-wall limit

●  Dependence of maximum 
 achievable βN on qmin reduced 
 by broadening pressure profile

295-04JF/jy

MEASURED NO-WALL βN LIMIT AND MAXIMUM EXPERIMENTAL 
βN DECREASE AS qmin INCREASES
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●  Increased Jpedestal is destabilizing

●  Stability is sensitive to the position 
 of P′ and J peaks

●  Peak J matching neoclassical 
 bootstrap plus ohmic best
 matches experimental observation 
 of an instability

295-04JF/jy

QUANTITATIVE AGREEMENT BETWEEN THE MEASURED 
NO-WALL βN LIMIT AND THEORY DEPENDS 

ON VALUES OF H-MODE PEDESTAL J AND P′
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●  Modeled n = 1 stability limits 
 show a decrease with increasing 
 BT (q95)

●  Trend with q95 of measured 
 no-wall limit agrees with the 
 modeling

— Quantitative difference results
 from different qmin values

295-04JF/jy

q95 FOR STEADY-STATE EXPERIMENTS IS CHOSEN 
TO MAXIMIZE THE EXPERIMENTALLY ACHIEVABLE βN
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●  Modeled n = 1 stability limits 
 show a decrease with increasing 
 BT (q95)

●  Trend with q95 of measured 
 no-wall limit agrees with the 
 modeling

●  Operation closer to the ideal-wall
 limit at increased BT is responsible
 for the increase in achievable βN

— Quantitative difference results
 from different qmin values

295-04JF/jy

q95 FOR STEADY-STATE EXPERIMENTS IS CHOSEN 
TO MAXIMIZE THE EXPERIMENTALLY ACHIEVABLE βN
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EFFECT OF BROADENED 
PRESSURE PROFILE



●  Core P′ specified by a family 
 of polynomials:

— P′ (ψ) = 1 + bnψ – (1 + bn)ψ2

●  Hyperbolic tangent form used 
 for H-mode edge pressure pedestal:

●  Total pressure = core + pedestal

Example:

— Based on experiment scaling

— Pped ∝ Ip (1+βp)0.9(1+δ)2.11(1+κ2)–1.152

— P(0)/〈P〉 ranges from 2 to 4.5

295-04JF/jy

A MODELING STUDY INVESTIGATED THE DEPENDENCE 
OF βN LIMITS ON THE PRESSURE GRADIENT PROFILE

SHAPE IN fBS > 70% EQUILIBRIA
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●  n = 2 is the limit for P(0)/〈P〉 < 3

●  Scatter results from the range 
 of discharge shapes included

●  Model equilibria have qmin ≈ 2

●  Predicted values agree roughly
 with the experimental data

●  Fit:
 βN = 11.9[P(0)/〈P〉]–1.13

295-04JF/jy

PREDICTED βN LIMITS DECREASE STRONGLY AS 
THE PRESSURE PROFILE BECOMES MORE PEAKED
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●   Pumping reduces ne
pedestal, core neutral 

 beam fueling increases ne(0)

●  There is weak negative central shear 
 that leads to a weak internal transport 
 barrier, further peaking ne, Ti

●  Internal mode grows on a rapid 
 time scale

—  Kink mode phasing similar to 
 pressure gradient driven resistive 
 interchange 
 —  Initiates reduction in P peaking 
 and change in bootstrap profile

—  In some discharges, a disruption 
 immediately follows the mode

295-04JF/jy

WITH EFFICIENT PARTICLE EXHAUST PUMPING 
P(0)/〈P〉 IS HIGH AND βN LIMIT IS REDUCED
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●  P(0)/〈P〉 = 2.2 versus 2.7

●  In the case without the 
 gas puff, P(0)/〈P〉 is enhanced 
 because core rotational 
 shear increases

295-04JF/jy

IN THE EXPERIMENT, A BROADER PRESSURE PROFILE 
AND HIGHER βN WERE OBTAINED BY BROADENING 
THE DENSITY PROFILE WITH EXTRA GAS PUFFING
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●  Rotation decreases as βN passes above 
 the ideal no-wall limit as a result of the 
 enhanced plasma response to external, 
 nonaxisymmetric fields

●  Drop in rotation to near 0 as βN
 approaches the maximum value 
 results from low level n = 1 resistive 
 wall mode activity

295-04JF/jy

BROADER PRESSURE PROFILE ALLOWS BETA 
TO CONTINUE RISING TO βN = 4 at qmin = 2
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●   Normally there is a region where dP/dψ is limited by ballooning stability

●  Magnetic shear profile modified by broadening bootstrap current

295-04JF/jy

BROAD PRESSURE IS POSSIBLE BECAUSE OF ACCESS 
TO THE INFINITE-n BALLOONING MODE SECOND STABLE 

REGIME ACROSS THE FULL PROFILE
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●   qmin > 2, more peaked pressure:
n = 1 tearing mode locks to low level
n = 1 RWM

295-04/JF/jy

EVEN WITH βN NEAR THE IDEAL-WALL LIMIT, THE HIGH 
BETA PHASE ALMOST ALWAYS ENDS AS A RESULT 

OF A TEARING MODE, NOT A KINK MODE
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●   qmin > 2, more peaked pressure:
n = 1 tearing mode locks to low level
n = 1 RWM

●   qmin > 2, broad pressure:
3/1 mode grows to large amplitude.
Earlier n = 5/2 or 7/2 burst briefly
reduces beta

295-04JF/jy

EVEN WITH βN NEAR THE IDEAL-WALL LIMIT, THE HIGH 
BETA PHASE ALMOST ALWAYS ENDS AS A RESULT 

OF A TEARING MODE, NOT A KINK MODE
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●   qmin > 2, more peaked pressure:
n = 1 tearing mode locks to low level
n = 1 RWM

●   qmin > 2, broad pressure:
3/1 mode grows to large amplitude.
Earlier n = 5/2 or 7/2 burst briefly
reduces beta

●   qmin ≈ 1.7: 2/1 mode grows to large
 amplitude. Earlier fast growing n = 1 
 kink-type mode triggers 3/2 tearing

●   Even if qmin is maintained above 2 
 to avoid the 2/1 tearing mode, other 
 modes with larger m/n can still have 
 significant effects on confinement

295-04JF/jy

EVEN WITH βN NEAR THE IDEAL-WALL LIMIT, THE HIGH 
BETA PHASE ALMOST ALWAYS ENDS AS A RESULT 

OF A TEARING MODE, NOT A KINK MODE
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●   Peaked pressure, qmin ≈ 1.7: 
 m = 2, mode peaks in the core

●  Beta near no-wall limit: 
 m = 6,7, mode peaks at 
 the edge

295-04JF/jy

THE CALCULATED STRUCTURE OF THE UNSTABLE 
n=1 MODE ILLUSTRATES THE REGIONS OF THE DISCHARGE 

MOST STRONGLY AFFECTING STABILITY
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●  Preliminary results show broadening 
 of temperature profiles as q95 decreases
 and ρ(qmin) increases

●  A safety factor profile with qmin > n 
 (n integer) and q95 < n + 1 could be a
 way to avoid tearing modes

295-04JF/jy

A RELATIVELY FLAT q PROFILE WITH LARGE ρ(qmin) 
IS UNDER STUDY AS A WAY 

TO BROADEN THE PRESSURE PROFILE
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DISCHARGE SHAPE CHANGES



●  Cryopumps were not used so no change in particle pumping with shape

295-04JF/jy

IN THE EXPERIMENT, THE ACHIEVABLE βN WAS COMPARED 
IN THE STANDARD PUMPING SHAPE 

AND DISCHARGES WITH STRONGER SHAPING
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●  Changes in profiles could also be important: li, P(0)/〈P〉, H–mode pedestal

— Standard shape: fast growing core 
 n = 1 leads to a disruption

— Higher κ, δ shapes: large ELMs 
 lead to a soft collapse

●  βN not limited by an ideal kink

295-04JF/jy

THE MAXIMUM βN WAS OBTAINED IN THE UP/DOWN 
SYMMETRIC DOUBLE-NULL DIVERTOR SHAPES
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●  Indicates increase in experimental βN likely results from increase in κ, δ in 
 transition from single-null to double-null shape

Examples of results from a broad range of parameter scans with double-null

●  n = 2, n = 3 limits are lower than for n = 1 (here pressure is broad)

295-04JF/jy

MODELING STUDIES PREDICT THAT INCREASES 
IN κ, δ INCREASE THE IDEAL, LOW-n βN LIMITS
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MEASURED Pédge SCALES WITH DISCHARGE SHAPE LIKE THE 
PREDICTED THRESHOLD FOR n = 5 IDEAL, KINK/BALLOONING MODES

� Squareness scan shows quantitative
agreement within 40% for similar
pedestal width

� Pedestal pressure also increases
with triangularity
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�  At sufficiently high squareness:
—  ELM frequency increases a factor of 10
—  Te perturbations are not measurable

342–99

CHANGE IN BALLOONING 2nd REGIME ACCESSIBILITY
IS INDICATED BY CHANGES IN ELM FREQUENCY AND AMPLITUDE
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�  Abrupt:  only a small shape
change required
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� Trends with density and triangularity calculated using series of model equilibria, and compared to database
– Inputs are Bt, Ip, R, a, κ, δ, <ne>, ∆

� Strong increase in pedestal height with triangularity is due to opening of second stability access

– Bootstrap current plays a key role here.  Without it (dashed line) second stability is
not accessed at high n and strong δ trend not predicted

� Trends with both density and triangularity accurately reproduced: indicates both that pedestal is MHD limited
and that model equilibria are sufficiently accurate

–  encourages use of this method as a predictive tool for future devices NATIONAL FUSION FACILITY
S A N  D I E G O
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Edge current density increases with edge temperature (Ohmic+collisional bootstrap)

Can consider stability diagram in βN-Tped space

MHD stability explicitly limits steady state Tped, (for a given width)

Higher triangularity decouples peeling and ballooning modes, allows higher 
temperature pedestal

Peeling-ballooning modes provide a constraint on
the edge temperature pedestal, as well as β
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MODE WITH THE LARGEST n WITHOUT 2nd STABLE REGIME
ACCESS WILL HAVE THE LOWEST Pédge STABILTY THRESHOLD
� Calculated Pédge threshhold decreases with toroidal mode number
� Fixed, medium squareness (δ2 = 0.05) shape, wall radius = 1.5α, GATO code

342-99/rs
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●  Goal: find the best way to operate at high βN and q in order to maximize fBS 
 for steady-state and βT for fusion gain 

●  A test of the effect of a broader pressure profile resulted in increased βN

●  qmin βN increased from 6 at qmin = 1.5 to 9 at qmin ≈ 2.3, the highest value tested

— From modeling, pressure profile broadening could allow large increases 
 in achievable beta

— Increasing fBS by increasing qmin is feasible with broad pressure

●  Operation is routinely above the no-wall stability limit

●  Highest experimental βN values were obtained in balanced double-null 
 discharge shapes with the largest κ, δ

— Optimized correction of nonaxisymmetric fields and active feedback 
 stabilization of the RWM are essential

295-04JF/jy

OPTIMIZATION OF ADVANCED TOKAMAK DISCHARGES WITH 
RESPECT TO THE BETA LIMIT IS POSSIBLE THROUGH TUNING 

OF THE q PROFILE, PRESSURE PROFILE AND DISCHARGE SHAPE
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●  Additional power for electron cyclotron and fast wave current drive will be 
 available to control qmin and q(0)

●  Conversion of 1/4 of the neutral beams to counter-injection will allow additional 
 rotation profile control

●  Lower divertor pump to be converted to pump higher triangularity double-null 
 divertor discharges

●  Recently installed internal nonaxisymmetric coils will be used for improved 
 error field correction and improved active RWM feedback control to allow 
 steady-state operation close to the ideal-wall beta limit

— Together with current profile control, provides a possible mechanism 
 for pressure profile broadening through energy transport modification

295-04JF/jy

UPCOMING WORK IN DIII–D IS WELL POSITIONED 
TO FOLLOW THE PATH TO HIGH βN AT INCREASED 

qmin INDICATED BY THESE RESULTS
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Pedestal & ELMs Key to Plasma Performance
� Both theory and experiment indicate a strong dependence of core confinement, and

therefore Q on the pedestal height (pped, Tped)

� ELM characteristics strongly impact divertor and wall heat load constraints
(large Type I ELMs may not be tolerable in Burning Plasma devices)

�Goal is predictive understanding of physics controlling pedestal height and ELM
characteristics ⇒  combination of high pedestal and tolerable ELMs
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T. Osborne,  EPS 2001 2
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H-mode pedestal may impact H-mode based tokamak reactor
performance through temperature profile stiffness.

[1] J.E. Kinsey, et al., Berchtesgarten EPS, III 1081 (1997)
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Turbulent transport simulations that
predict stiff temperature profiles (ITG)
show strong dependence of core on edge [1]

♦ Maximum PF and Q are obtained at min <T> for stable operation => PF /PLOSS ~ H 2
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Intermediate n Peeling-Ballooning Mode Model of the Type I 
ELM Instability is Consistent With Observations 
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P′′′′ variation with shape in  DIII-D, JT-
60U, and AUG consistent with edge 
peeling-ballooning stability
ELM onset time consistent with 
predicted instability onset
Fast growing low 1 < n < 30 modes are 
observed as Type I ELM precursors
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Motivation and Background

• ELMs and the edge pedestal are key
fusion plasma issues
– “Pedestal Height” controls core

confinement and therefore fusion
performance (Q)

– ELM heat pulses impact plasma facing
materials
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Background: Extending the Peeling-Ballooning Model

• Peeling-Ballooning Model of ELMs - significant successes
– ELMs caused by intermediate wavelength (n~3-30) MHD instabilities

• Both current and pressure gradient driven
• Complex dependencies on ν*, shape etc due to bootstrap current and “2nd stability”

– Successful comparisons to experiment both directly and in database studies

• Need to understand sources and transport to get profile shapes (“pedestal width”)
• Rotation and non-ideal effects to precisely characterize P-B limits, nonlinear

dynamics for ELM size




