Ideal MHD stability scaling with aspect ratio, shaping, and q

J.E. Menard Princeton Plasma Physics Laboratory

IEA Workshop 59 February 14, 2005 General Atomics - San Diego, CA

J.E. Menard - IEA Workshop 59 - Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks

Outline

- Will describe systematic computational studies of aspect ratio dependence of ideal stability limits
- Search for possible aspect ratio "invariants" of ideal stability, identify scalings which are not A-invariant
- This work is motivated by the predicted and observed increase in β_N and κ limits at low A Example:
 - Typical NSTX plasma aspect ratio A = 1.3-1.5
 - Achieved $\beta_N \geq 6.5$, $\beta_N \: / \: I_i > 10$
 - Sustained $\beta_N > 5$, $\kappa > 2.5$ at $I_i \approx 0.6$ for several τ_J

References: 1. Phys. Plasmas, Vol. 11, No. 2, February 2004, page 639 2. PPPL Report 3779, February 2003

Scope of computational studies:

1. Find optimized *no-wall* stability limit vs. A

- All cases stable to n=1-3 kink and $n=\infty$ ballooning
- $f_{BS} = 50\%$, $\kappa=2$, $\delta=0.45$, up-down symmetric & limited
- No local BS current over-drive
- No H-mode edge p' and J_{\parallel} profiles \rightarrow 0 at boundary
- 2. Study *no-wall* limits vs. shaping and *q* at fixed low-A
 - Squareness fixed at 0 for all scans treated here

3. Study <u>ideal-wall</u> limits vs. A at $f_{BS} = 99\%$

- All cases stable to n=1-6 kink and $n=\infty$ ballooning
 - Requires ideal wall at b_{wall} / a = 1.1
- J profile perfectly aligned with J_{BS} , need 1% on-axis seed current
- Elongation increased (and I_i decreases) as A \rightarrow 1
 - All κ 's stable with ideal wall at $b_{wall} / a = 1.1$

4700 JSOLVER fixed-boundary equilibria + DCON & PEST-I

No-wall stability at f_{BS} =50%, κ =2, δ =0.45

Troyon's original scaling apparently extends to low-A

No-wall stability at f_{BS} =50%, κ =2, δ =0.45

← Optimum I_i ≈ 0.8 for A > 2
 − I_i drops to 0.4 as A → 1.25
 ← Optimum q(0) ≈ 1.2 for A > 2

- q(0) increases to 2 as A \rightarrow 1.25

 $\leftarrow β_N / I_i → 16 \text{ as } A → 1.25$ $- Clearly β_N / I_i ≈ 4 not A-invariant$ $\leftarrow ⟨β_N⟩ / I_i also not A-invariant$

No A-invariant β_N / I_i value has been found for the no-wall limit

No-wall stability at f_{BS} =50%, A=1.6

← β_T limit can increase 3-fold as κ increases from 1.6 to 2.5

- Only 1.5 × increase with κ at δ = 0.3
- High δ essential for highest stable β_T

← $β_N$ limit increases from 3.5 to 5.5 with increasing δ at κ = 2.5– Much weaker $β_N(δ)$ variation at low κ

 $\leftarrow \langle \beta_N \rangle \text{ nearly invariant w.r.t. shape}$ $- But, \langle \beta_N \rangle → 2.5 at highest κ, lowest δ$

High δ is required to take full advantage of high κ at low A Similar result found in numerous previous studies at higher A

q scaling of the no-wall current limit:

(%) ≤ 3.2 I_N ≡ I_P /aB_T for all scans

(β) scales linearly with I_N only above some critical "edge" q (below some I_N)

Current limit → kink unstable at β=0

Edge q limit is not an A-invariant

A=3.3, κ=2.0, δ=0.45

- A=1.6, κ=2.0, δ=0.45
- A=1.6, κ=2.5, δ=0.60

 $\leftarrow \langle \beta_N \rangle \text{ and } q^* ≡ ε(1+κ^2) π / μ_0 I_N \text{ define}$ no-wall stability space in a more aspect ratio invariant form: $- \langle \beta_N \rangle \text{ decreases for } q^* < 2$

 $-\langle \beta_N \rangle \rightarrow 0$ as $q^* \rightarrow 1$ for all cases studied

NSTX stability data compared to scalings:

n = 0-6 modes stable with ideal wall at 1.1 × minor radius \rightarrow Active control (or rotation for RWM) required for plasma stability

(a) Low-A has monotonic shear, higher-A is reversed-shear
- Central q ≈ 4 for both cases
(b) Optimal *p* profiles very broad with peaking factor = 1.4

(c) Current density profiles very hollow with $I_i = 0.15-0.3$

- Small on-axis ext. CD required

(d) Intermediate to high-n kink
 modes set β limit

Overall, wall stabilization and optimized profiles can double the toroidal β and bootstrap current fraction \rightarrow efficient & steady-state

Summary

- For fixed shape κ =2, δ =0.45 and f_{BS}=50%, the no-wall β_N limit doubles from 3 to 6 as A \rightarrow 1
- A volume-average $\beta_N \equiv \langle \beta_N \rangle$ (Troyon) limit of 3-3.5 is an approximate aspect ratio invariant
 - High δ is required at high κ to maximize benefit of high κ
 - $\langle \beta_N \rangle$ and q^* good variables to parameterize current limit
 - NSTX data consistent with current limit scaling for $q^* < 2$
- For reactor scenarios with $f_{BS}=99\%$, the ideal-wall β_N limit increases from 6 to 9 as A \rightarrow 1
 - Results strongly dependent on constraints:
 - Wall position, *n* and *T* profiles, elongation, etc.