Burn control study using burning plasma simulation experiments in JT-60U

H. Takenaga1), Y. Miura1), H. Kubo1), Y. Sakamoto1), H. Hiratsuka1), H. Ichige1), I. Yonekawa1), Y. Kawamata1), S. Tsuji-lio2), R. Sakamoto3), S. Kobayashi4)

1) Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, 801-1 Mukouyama, Naka, Ibaraki 311-0193, Japan
2) Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
3) National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
4) Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Workshop (W60) on “Burning Plasma Physics and Simulation”
4-5 July 2005, University Campus, Tarragona, Spain
Under the Auspices of the IEA Large Tokamak Implementing Agreement
Introduction

Burning plasmas (DT plasmas)

• Strong linkage between plasma pressure and heating power through α particle heating.
• Burn control has to be performed under this linkage involving various physics.

This study provides new approach to the burn control study.

→ The linkage is experimentally simulated in non burning plasmas.

Plasma behavior and controllability under the linkage are discussed.
Outline

- Scheme of burning plasma simulation
- Burning plasma simulation experiments
- 0-dimensional calculation
- Discussion and further improvement
- Summary
Scheme of burning plasma simulation

Two NB groups

Group A: α particle heating simulation

\[P_{NB}^\alpha = G \times S_n \]

\[P_{NB}^\alpha \text{ [MW]} = G \times S_n^{DD} \times 10^{14} / s \]

Group B: external heating simulation

\[P_{NB}^{Ex} \text{ by pre-programming or stored energy FB control} \]

Equivalent fusion gain for DT corresponding to the same ratio of α particle and external heating

\[Q = 5 \frac{P_{NB}^\alpha}{P_{NB}^{Ex}} \]
Limitations

In this burning plasma simulation, there are limitations at present.

- Different dominant reaction
 - DD: beam-thermal and thermal-thermal
 - DT: thermal-thermal

- Different temperature dependence between $<\sigma v>_{DT}$ and $<\sigma v>_{DD}$

- Complicate control for D and T in DT burning plasma

- Different heating profile and velocity distribution of α particle heating

- No consideration of effects of instability triggered by α particles

- No consideration of mass dependence of transport

- Stepwise change of P_{NB}^α (P_{NB}^α is changed stepwise against S_n, because P_{NB}^α is controlled by number of NB unit)
The loop of increases in P_{NB}^α and Sn is triggered with $G=1.4$ in ELMy H-mode plasma.

- **Constant** $P_{NB}^{Ex}=3.1$ MW. (no burn control)
- P_{NB}^α: 2.4 MW ($Q=3.8$) -> 14 MW ($Q=22$) with a time scale of 0.2 s.
- **Strong linkage** between plasma pressure and heating power can be simulated.
- P_{NB}^α reaches to the upper limit of the available NB power.

Burning plasma simulation

- $I_p=1.0$ MA, $B_T=1.9$ T
- $n_e=1.0 \times 10^{19} \text{ m}^{-3}$
- $W=2.7$ MJ
The loop is triggered with $G=0.6$, although it is not triggered with $G=0.35$ in reversed shear plasma.

P_{NB}^{α}: constant at 5.1 MW ($Q=6.7$).

$G=0.35$

$P_{NB}^{\alpha}+P_{NB}^{\text{Ex}}$

P_{NB}^{Ex}

P_{NB}^{α}

P_{NB}^{Ex}

$G=0.6$

5.1 MW ($Q=6.7$) \rightarrow 10.7 MW ($Q=14$).

$P_{NB}^{\text{Ex}}=3.8$ MW constant

Disruption

\bar{n}_e (10^{19} m^{-3})

$I_p=1.0 \text{ MA}, B_T=3.7 \text{ T}$

W (MJ)

$E41254$

$E41261$

P_{NB}

P_{NB}^{α}

P_{NB}^{Ex}
W and Sn are well controlled by P_{NB}^{Ex} in ELMy H-mode / L-mode plasma

- W is well controlled at a constant value after $t=12.5$ s by reducing P_{NB}^{Ex} against the increase in P_{NB}^{α}.

- Although the controllability is not lost at $t=13.6$ s with $P_{NB}^{Ex}=0$, the reduction of P_{NB}^{Ex} to zero indicates that the control margin is not so large in high Q region ($Q \sim 30$).

- Burn control by external heating will be applied to reversed shear plasma.
0-dimensional model

Energy
\[
\frac{dW}{dt} = -\frac{W}{\tau_E} + P_{NB} - P_{rad}
\]

Fast ion (deuterium)
\[
\frac{dN_f}{dt} = -\frac{N_f}{\tau_f} + S_{NB}
\]

Bulk ion (deuterium)
Center fueling
\[
\frac{dN_D^C}{dt} = -\frac{N_D^C}{\tau_D^C} + \frac{N_f}{\tau_f}
\]

Edge fueling
(including SOL and divertor)
\[
\frac{dN_D^E}{dt} = -\frac{N_D^E}{\tau_D^E} + S_{R+GP}
\]

Impurity
\[
\frac{dN_{imp}}{dt} = -\frac{N_{imp}}{\tau_{imp}} + S_{imp}
\]

Calculation conditions
\[V=70 \, m^3, \, Z=6 \, (\text{carbon})\]

Confinement time
\[
\tau_E = \tau_{E0}P^{-0.69}n_e^{0.41} \quad \text{(IPB98 (y,2) scaling)}
\]

\[\tau_f: \text{slowing down time}\]
\[
\tau_D^C = \tau_{D0}^CP^{-1.1}n_e^{0.66} \quad \text{(H. Takenaga et al. NF 1999 1917.)}
\]
\[
\tau_D^E = \tau_{D0}^EP^{-1.1}n_e^{-0.36}
\]
\[
\tau_{imp} = \tau_{imp0}P^{-1.1}n_e^{-0.36}
\]
\[
\tau_{E0} = 0.2 \, s, \, \tau_{D0}^C = 0.5 \, s, \, \tau_{D0}^E = 0.005 \, s, \, \tau_{imp0} = 0.005 \, s,
\]

Neutron yield
thermal-thermal : Maxwell distribution at \(T \)
Beam-beam : Maxwell distribution at 60keV
beam-thermal : Maxwell distribution at \(T_{eff} = \frac{(n_fT_f+n_D^CT)}{(n_f+n_D)} \)
\[T = W/e(3/2(n_D^C+n_D^E+n_f+n_{imp}+n_e))\]
The loop triggered by increasing G well simulates the loop triggered by increasing τ_E.

- Constant P_{NB}^{Ex} at 5 MW (no burn control) and $Q=5$ before $t=5$ s.
- S_n and P_{NB}^{α} are increased due to increase in G or τ_E. P_{NB} reaches upper limit of 30 MW ($Q=25$).
- A time scale of increases in S_n and P_{NB}^{α} is smaller for larger increase in G or τ_E.

Red: G is increased at $t=5$ s
Blue: τ_E is increased at $t=5$ s
Burn control is effective even with $G=1.2G_0$ at $Q=5$, but is lost with $G=1.12G_0$ at $Q=30$.

- P_{NB}^{Ex} is controlled at every 10 ms with W FB control (burn control).
- $G=1.2G_0$ at $Q=5$, P_{NB}^{Ex} : 5 MW ($Q=5$) to 3.95 MW ($Q=8$)
- $G=1.1G_0$ at $Q=30$, P_{NB}^{Ex} : 1.4 MW ($Q=30$) to 0.23 MW ($Q=225$)
- $G=1.12G_0$ at $Q=30$, Sn and P_{NB} gradually increase during $t=5-6$ s and quickly increase after $t=6$ s. P_{NB}^{Ex} decreases to zero.
Discussion and further improvement

For further improvement,

- Different dominant reaction
 DD: beam-thermal and thermal-thermal, DT: thermal-thermal
 \(\rightarrow \) H beam

- Different temperature dependence between \(<\sigma v>_{DT} \) and \(<\sigma v>_{DD} \)
 \(\rightarrow \) Correction using real time \(T_i \) measurement

- Complicate control for D and T in DT burning plasma
 \(\rightarrow \) Simulation using D and H
Planned scheme of burning plasma simulation

Neutron yield rate (Sn)
Ion density (n_i)
Ion temperature (T_i)

$\gamma = \frac{(Sn/V/f_{DD}(T_i))^{0.5}}{n_i}$

$P_{NB}^\alpha = (1-\gamma)\gamma n_i^2 f_{demo}(T_i)$

Control scheme

Real time T_i measurement is being developed.

$Sn = \int \gamma^2 n_i^2 f_{DD}(T_i) dV$

$n_D = \gamma n_i$

$n_H = (1-\gamma)n_i$

Control scheme is being developed based on 0-dimensional calculation.

Pellet injector is now being modified.
Frequency: 10 Hz -> 20 Hz
Duration: 5-6 s -> 60 s
Summary

- Burning plasma simulation scheme is developed using 2 groups of NB, where one simulates α particle heating and other simulates external heating.

- The loop of increases in neutron yield rate and simulated α particle heating power is triggered by increasing the proportional gain without burn control in the ELMy H-mode and reversed shear plasmas.

- With burn control using the external heating, the neutron yield rate is kept constant in the ELMy H/L-mode plasma.

- Zero dimensional calculation shows that the loop triggered by increasing proportional gain well simulates the loop triggered by increasing confinement.

Acknowledgments: This work was partly supported by JSPS, Grant-in-Aid for Scientific Research (A) No. 16206093.