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Introduction

Burning plasmas (DT plasmas) DT plasma

-H-mode
plasma

e Strong linkage between plasma
pressure and heating power through
o particle heating.

e Burn control has to be performed
under this linkage involving various
physics.

D(H) plasma
This study provides new approach to the
burn control study.

-H-mode
plasma

=> The linkage is experimentally
simulated in non burning plasmas.

Plasma behavior and controllability
under the linkage are discussed.
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® Scheme of burning plasma simulation
® Burning plasma simulation experiments
® (-dimensional calculation

® Discussion and further improvement

® Summary



Scheme of burning plasma simulation
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o, particle heating simulation

Neutron yield
rate (Sn)
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FB control system

?

Stored energy (W)

External heating simulation

Two NB groups
Group A : o particle heating
simulation
P\ [MW]=GxSnP°[1014/s]

Group B : external heating
simulation
P,g* by pre-programming
or stored energy FB control

Equivalent fusion gain for DT
corresponding to the same
ratio of o particle and external
heating

Q=5P,; /P



Limitations
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In this burning plasma simulation, there are limitations at present.

®Different dominant reaction
DD : beam-thermal and thermal-thermal
DT : thermal-thermal

® Different temperature dependence hetween <ov>; and <ov>p,

®Complicate control for D and T in DT burning plasma

®Different heating profile and velocity distribution of o particle
heating

®No consideration of effects of instability triggered by o particles
®No consideration of mass dependence of transport

@ Stepwise change of P ;> (P\z® is changed stepwise against Sn,
because P,z is controlled by number of NB unit )



The loop of increases in Pz and Sn is triggered
with G=1.4 in ELMy H-mode plasma

— 4 pressure and heating power can
E % be simulated.

® P,z reaches to the upper limit of
the available NB power.
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The loop is triggered with G=0.6, although it is not

triggered with G=0.35 in reversed shear plasma.
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W and Sn are well controlled by P ;t* in ELMy

H-mode / L-mode plasma
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® W is well controlled at a
constant value after t=12.5 s by
reducing P,;t* against the
increase in Pyg®.

@ Although the controllability is
not lost at t=13.6 s with P ;5*=0,
the reduction of P,z to zero
indicates that the control margin
is not so large in high Q region
(Q~30).

® Burn control by external heating
will be applied to reversed shear
plasma.



0-dimensional model
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Energy
dW \W%
—=——4+P,-P
dt TE NB rad
Fast ion (deuterium)
dN; _& i
dt T,

Bulk ion (deuterium)
Center fueling

dN, _ Np N,

=+
dt T, T;
Edge fueling
(including SOL and divertor)
dN, _ Np L
dt Tg R+GP
Impurity
dNimp _ Nimp + .
dt T. e

mp

Calculation conditions
V=70 m3, Z=6 (carbon)

Confinement time
T = TP 0%°n 04 (1PB98 (y,2) scaling)
T; : slowing down time
tDC = tDOCP'1-1n 80-56 (H. Takenaga et al. NF
T,F = tDOEP-1.1ne-0.36 (1999) 1917.)

— -1.1n -0.36
17imp_17imp0P ne

tE0=0'2 S, tDOC=0'5 S, tD0E=0-005 S,
T =0.005 S,

Neutron yield
thermal-thermal : Maxwell distribution at T
Beam-beam : Maxwell distribution at 60keV
beam-thermal : Maxwell distribution at
T=(n;T+nyT)/(n+Np)

T=W/e(3/2(ny°+ny+ ne+n;, +n,))



The loop triggered by increasing G well simulates
the loop triggered by increasing ;.
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® Constant P gt at 5 MW (no burn
control) and Q=5 before t=5 s.

® Sn and P> are increased due
to increase in G or t¢. Pyg

reaches upper limit of 30 MW
(Q=25).
® A time scale of increases in Sn

and P,g;* is smaller for larger
increase in G or t.

Red : Gis increased att=5s
Blue : T is increased at t=5 s



Burn control is effective even with G=1.2G, at Q=5,
but is lost with G=1.12G, at Q=30.
JT-600 =

® P, .5 is controlled at every 10 ms with W FB control (burn control).

® G=1.2G, at Q=5, P,z : 5 MW (Q=5) to 3.95 MW (Q=8)

® G=1.1G, at Q=30, P,z : 1.4 MW (Q=30) to 0.23 MW (Q=225)

® (=1.12G, at 0=30, Sn and P,g gradually increase during t=5-6 s
and quickly increase after t=6 s. P,;"* decreases to zero.
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Discussion and further improvement
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For further improvement,

®Different dominant reaction
DD : beam-thermal and thermal-thermal, DT : thermal-thermal
=> H beam

® Different temperature dependence hetween <ov>; and <ov>p,
=> Correction using real time T, measurement

®Complicate control for D and T in DT burning plasma
=> Simulation using D and H



Planned scheme of burning plasma simulation

e JT-60U =

Neutron yield rate (Sn)
lon density (n,) —p{  y=(Sn/V/f,,(T))%/n,

lon temperature (T;) l

Real time T, v

Pyg=(1-7)YNf oo (T3)

measurement is Control scheme

Control scheme is being
Pust* developed based on 0-
dimensional calculation.

being developed.

[ 1

Sn= § y2n?fpp(T))dV

Ny,=YN, .
Fuelin
ny=(1-y)n; D / <
H Pellet injector is now being
modified.

Frequency : 10 Hz -> 20 Hz
Duration: 5-6 s -> 60 s




Summary
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® Burning plasma simulation scheme is developed using 2 groups of

NB, where one simulates o particle heating and other simulates
external heating.

® The loop of increases in neutron yield rate and simulated o particle
heating power is triggered by increasing the proportional gain
without burn control in the ELMy H-mode and reversed shear
plasmas.

® With burn control using the external heating, the neutron yield rate is
kept constant in the ELMy H/L-mode plasma.

® Zero dimensional calculation shows that the loop triggered by
Increasing proportional gain well simulates the loop triggered by
increasing confinement.
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