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Introduction

Pheat=860MW

Prad
div>360MW

Pdiv<100MW

Prad
main~400MW

Example for A-SSTR2

frad~0.9

 Fusion output : 4GW
 External heating :

60MW

Reduction of heat load onto the
divertor plates

Enhancement of radiation loss by
injecting seed impurity (frad~0.9)

High radiation loss around the
main plasma edge is required.

Radiation loss in the core plasma

High confinement is required to
maintain the high temperature.


Suppression of impurity accumulation
in the core plasma

Optimization of impurity injection
scenario is important.
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 Operation regime has been extended to high density
(ne/nGW    1) with high confinement (HHy2   1) and high
radiation loss fraction (frad>0.9) in AT plasmas with ITB.
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• Intrinsic metal impurity
• Ne seeding

High βp H
• Ar seeding

H-mode
• Ar seeding

H-mode

Double lines : with impurity
seeding



Radiation profile in JT-60U
JT-60U
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 Radiation profile is peaked in both RS and high βp H.

 Radiation from Cu largely contributes in RS.

 Central radiation is ascribed to Ar in high βp H.

 In RS, no confinement degradation is observed even
with high radiation loss in the main plasma.
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Impurity transport in JT-60U
JT-60U
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 No He and C
accumulation inside
the ITB

 Ar accumulation
inside the ITB

– weaker than the
neoclassical
prediction.

(DAr~2-5xDAr
NC)

– stronger in RS than
in high βp H.



Impurity injection scenario

Flat density profile (<=low central fuelling)
●Small impurity accumulation
▲Operation with high edge density above Greenwald

density (nGW) may be necessary for high fusion output.

Peaked density profile (<=inward pinch)
●It is possible to achieve high fusion output with

relatively low edge density (<nGW).
▲Impurity accumulation is one of the largest concerns.

Establishment of impurity injection secnario in a burning
plasma

It is necessary to clarify dependence of required
confinement and edge density on the impurity
accumulation level and density profile.



Calculation conditions

A-SSTR2

Ip=12MA, BT=11T, Rp=6.2m, a=1.5m,
Fusion output ~4GW, Prad

main~400MW,
Aux. heating=60MW
Impurity : Ar
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Case with nAr profile more peaked by a
factor of 2 than ne profile
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Flat density
profile

W=850MJ
Prad(r/a<0.9)
   =218MW
HH=1.39

Peaked
density profile

W=767MJ
Prad(r/a<0.9)
   =342MW
HH=1.48
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= 2 × ne(0)
ne(0.7)



Case with nAr profile determined by
Neoclassical transport
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Flat density
profile

W=830MJ
Prad(r/a<0.9)
   =160MW
HH=1.33

Peaked
density profile

W=1025MJ
Prad(r/a<0.9)
   =361MW
HH=1.93



Dependence on electron density profile
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 Increase in core radiation
loss from accumulated
Ar by a factor of 2 can be
compensated with
slightly enhanced
confinement.

 Higher confinement is
required with peaked
density profile in the
neoclassical case.

 Edge density can be
reduced below
Greenwald density by
density peaking.

nAr(0)/nAr(ITB-foot)~ne(0)/ne(ITB-foot)
nAr(0)/nAr(ITB-foot)~2xne(0)/ne(ITB-foot)
Neoclassical Ar transport



Summary

 Required confinement and edge density are estimated
with 1-D transport code TOPICS/IMPACT for various
impurity accumulation levels and density profiles.

 In the case with Ar profile more accumulated by a factor
of 2 than electron density, increase in required
confinement is small even with peaked density profile.
At the same time, required edge density can be reduced
below Greenwald density.

 The analysis indicates that Ar accumulation by a factor
of 2, as observed in the high βp H-mode plasma, is
acceptable in a fusion reactor for impurity seeding.


