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Outline

• Solid Plasma Facing Components
– Heat Flux Limits for actively cooled PFCs
– Limitations due to ELMs and Disruptions
– Hydrogen isotope retention

• Liquid Surface PFCs
– Heat flux limits
– Response to ELMs and Disruptions
– Particle retention
– MHD considerations

• Conclusions
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Magnetic Fusion Energy Heat Fluxes
Are Very Challenging
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Solid Plasma Facing Components
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Typical Thermal Properties
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Heat Flux Capability
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Status of PFC research

• ITER PFC design
– Water cooled Cu Alloy heat sinks with CFC or W 

plasma facing surface in the divertor region (10-15 
MW/m2 steady state)

– Water cooled Cu Alloy heat sinks with 316LN insert 
and Be plasma facing surface on the first wall (0.5 
MW/m2 steady state)

– Full size prototypes have been fabricated and 
tested

– Scaling of fabrication to large area is unfinished
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Castellation Reduces Stress
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• 2-D plane stress 
• Elastic behavior 
• Temp. dependent props. 
• 2000 elements (8-node quad)

Tungsten, 5 mm thick



MAU 9 3/12/2001

Status of PFC research

• Existing fusion devices
– Most use passively cooled carbon based PFCs (one 

with W coating and one with molybdenum)
– Very few actively cooled PFCs
– Extensive time is spent conditioning the walls 

(relative to plasma on time)
– Some experiments have active particle control 

(cryo-pumps)
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Status of PFC research

• Off Normal events must be controlled
– Disruptions

• Disruption mitigation using massive gas puff is 
demonstrated on some machines 

• Reduced current decay rate and thermal loads on 
divertor (increases first wall energy deposition)

• Reliable detection and triggering is being 
investigated (neural networks)
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Status of PFC research

• Off Normal Events II
– Edge Localized Modes (ELMs)

• Present the greatest threat to PFC survival
• The highest performance plasmas have the largest 

ELMs (>1 MJ/m2 in a few hundred µsec at a few Hz)
• Melting is predicted on the divertor high heat flux 

region (and possibly on the first wall)
• The key issue is loss of melted material (determines 

PFC lifetime)
• Mitigation through double null, high triangularity, 

edge magnetic perturbation, etc. is partially 
successful
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Needs for Devices Beyond ITER

• Assume long pulse, high power density, high 
duty factor

• Improved radiation damage resistance for 
materials meeting PFC requirements.

• Understanding of radiation effects on PFC joints
• Mitigation and control of off normal events
• New coolant and material combinations 

compatible with tritium and high power for large 
numbers of cycles
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Key Issues

• For divertor PFCs
– High thermal conductivity
– Joints between PFM and heat sink
– Coolant compatibility
– Most likely He gas cooled
– Liquid metal PFCs are high risk, high potential 

alternative
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Heat Sink Development

• Coolant Choices
– Water is primary now but has future issues of steam 

interactions with hot refractory metals
– Helium gas is the prime candidate in the future

• Heat sink designs
– For water swirl tapes, hypervapotron, screw tube are all 

well established
– Porous metal heat sinks are in the initial stages of 

development for He gas cooling (Cu alloys now)
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Porous Metal Heat Sinks (He)
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• Promising designs have 
been found for Cu alloys

• Heat removal is 
approaching water values

• Pressure drop is ok.
• Refractory metal research 

just starting.
• Helium gas purity is a key 

issue but there appear to 
be solutions.

• Refractory alloy 
development is needed.
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Key Issues

• For first wall PFCs
– Material selection must be compatible with 

breeding blanket
– Very large area implies constraints on fabrication 

methods
– Coolant compatibility and joints to heat sink
– Plasma facing material (plasma prefers low Z and 

this is reinforced by fast radial transport)
– Radiation damage resistance and activation
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T Rise Due to Nuclear Heating
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Heat Flux Limits
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Be T Rise for 10 mm
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Limitations Due to ELMs and Disruptions

• For solid surface PFCs, some thermal margin 
must be allowed for ELM heat loads to prevent 
excessive melting of the surface.

• The limitation on the normal operation surface 
temperature reduces the heat flux that can be 
accepted even with active cooling.

• For an ITER like device the flux limits on a Be first 
wall are approximately consistent with the 
expected ELM deposition but for a DEMO this is 
unlikely to be the case.
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ELM Energy Density Limits for Be
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Hydrogen Isotope Retention

• There is a wide variation in inferred H retention in eroded 
and redeposited carbon on fusion devices
– 10-40% on JET and TFTR (only T machines)
– Few percent or less in recent measurements (higher T, 

different configurations, etc.)
– ITER needs less than 0.1% for no cleaning

• Existing methods for removing codeposits are inadequate
• Even if solutions are found for ITER, C is unlikely to be 

used in the future.
• Potential problems with other systems (e.g., Be/W) need to 

be studied just in case there is no solution for C
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Liquid Surface Plasma Facing 
Components
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Key Issues for Liquid Surfaces

• Is the heat and particle removal adequate?
• Can the flow be maintained in a tokamak 

environment?
• Are there practical engineering designs for the 

required systems?
• Is it safe to use free surface liquid flows in fusion 

devices?
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Surface Temperature Limits

• Lower end limits were taken from the UDEDGE 
Modeling (Rognlien) for high and low recycling 
(most applicable for the first wall). (Li - 400C, Sn
& Ga - 600C, In - 500C, SnLi - 600C)

• High end limits were taken from the WBC Code 
(Brooks) for the divertor where sheath 
considerations dominate (Sn - 1300C, Ga - 1000C, 
In - 800C, Li 500C, SnLi - 700C)

• Ga and In were scaled from Sn the vapor 
pressure curves using Z-3 for the allowed flux.
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Temperature Limits
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Thermal Diffusivity of Liquid Metals
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Very Good Power Handling
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Particle Pumping by Liquid Li

• H in Li can do one of two things
– Exist as H atoms at concentrations up to 2-10% for 

temperatures between 200 and 650 C
– Form LiH at higher concentrations (kinetics 

unknown)
• H atoms have a diffusivity of about 10-4 cm2/s
• To leave Li the H atoms must recombine into 

molecules
• Measurements have found nearly 100% retention 

in liquid Li
• Liquid Li is a good pump for H,D, T (Too good?)
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He Atom Pumping

• Helium does not need to recombine on the 
surface

• Helium retention is determined by the range of He 
in Li and the diffusivity

• If the residence time of He is long enough to 
reach the liquid collector, He pumping may be 
sufficient

• Measurements on flowing liquid Li are 
inconclusive

• Modeling suggests bubble formation may be 
important in higher Z liquids
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Response to ELMs and Disruptions

• ELM or disruption heat loads will cause 
evaporation of the liquid but the motion will move 
the heat liquid from the heat flux in approximately 
the duration of an ELM.

• Will excessive metal flux cause contamination 
and ruin the plasma?

• Disruptions are likely to cause large displacement 
of liquid. Can the liquid be recovered?
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MHD Considerations

• The flowing liquid metal will see both spatially 
and temporally varying magnetic fields.

• Both will induce currents in the liquid and cause 
forces.

• Experiments have shown that the shape changes 
in the liquid can be quite large

• MHD model development is still in progress
• It is too soon to tell if MHD will permit use of 

liquid surfaces in fusion devices.
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Conclusions
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Conclusions (Solid Surfaces)

• Control or mitigation of ELMs and disruptions is 
essential

• For divertor applications there is a need for:
– High thermal conductivity refractory alloys compatible 

with He gas cooling
– Joining methods for a high temperature radiation 

environment
– Practical enhanced heat transfer method

• For the First Wall there is a need for:
– Improved thermal conductivity
– Practical enhanced heat transfer methods
– Joining methods for a high temperature radiation 

environment
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Conclusions (Liquid Surfaces)

• Flowing liquids have an advantage for heat 
removal (50 MW/m2 is possible)
– Gallium is the best for heat removal
– Lithium may lead to low recycling (He pumping?)

• MHD stability of flowing liquids is an open 
question (could be a fatal flaw)
– MHD model development is progressing and 

comparison to experiment is starting
• Need materials for pipes, insulators, etc.
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