Joint Conference of 12th International Toki Conference and 3rd General Scientific Assembly of Asia Plasma Fusion Association (ITC-12 & APFA'01)

in Toki, JAPAN, December 11-14, 2001

Study of Time Evolution of Toroidal current in LHD

Kiyomasa Y. Watanabe^a, Satoru Sakakibara^a, Hajime Sasao^b, Michael Yakovlev^a, Kiyohiko Nishimura^a, Sadayoshi Murakami^a, Noriyoshi Nakajima^a, Hiroshi Yamada^a, Kazushige Narihara^a, Ichihiro Yamada^a, Kazuo Kawahata^a, Tokihiko Tokuzawa^a, Kenji Tanaka^a, Katsumi Ida^a, Shigeru Morita^a, Osamu Kaneko^a, Katsuyoshi Tsumori^a, Katsunori Ikeda^a, Yoshirou Narushima^a, Tomohiro Morisaki^a, Akio Komori^a, LHD experimental group^a and LHD device engineering group^a

^{a)} National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
 ^{b)} Japan Atomic Energy Research Institute, Naka, Ibaragi, 311-0193, Japan

Tangential View of LHD

Toroidal Current --- Observation ---

<u>In principle</u>

Toridal current for plasma confinement is not necessary in Heliotron devices!!

Observation in LHD

In NBI discahrge More than 100kA of toroidal current is observed.

No active control of one turn voltage

 $B_0 = 0.75 \sim 2.9T, H_2, R_{ax}^V = 3.6/3.75m,$ $I_p = -30 \sim 110 kA, \Delta u(a) = -0.04 \sim 0.1.$

> Toroidal current affects MHD equilibrium, stability and Transport in Heliotron devices

Determination of Driving Mechanism; Important !!

Candidates of Current Driving Mechanism; Ohkawa Current & Bootstrap Current

Outline of talk

- 1. Properties of Bootstrap Current in Heliotron devices
- Experimental Observation of Bootstrap current in LHD (including comparison results between experimental data and theoretical prediction)
- 3. Observation of MHD activity and rational surface
 - (A MHD activity indicates information of central rotational transform)
 - ➔ Information leads to determination of the current profile

Properties of Bootstrap Current in Heliotron devices (1) - profile TOKAMAK vs LHD (Heliotron) -

Properties of Bootstrap Current in Heliotron devices (2) - Dependence on Magnetic Axis Configuration -

$$\begin{array}{c} j_{BS} \sim (f_{t}/f_{c}) \ast G_{bs} \ast P \ast (n'/n + a_{1}T_{i}'/T_{i} + a_{2}T_{e}'/T_{e}) \\ a_{1}, a_{2} \sim O(+0.1), \ G_{bs} \ ^{tok} = I_{p}/2\pi i \end{array}$$

<u>Geometrical Factor for LHD in 1/v-regime</u>

Standard configuration

<u>Geometric Factor (BS current)</u> <u>strongly depends</u> <u>on Magnetic Axis Position!!</u>

Note!!

Magnetic Axis goes torus-outwardly =>

Geometric factor significantly decreases and changes the sign.

Time evolution of toroidal current and the estimation of non-inductive current

Comparison result with theoretical prediction

- W_p dependence -

- · Calculated result agrees with experimental data in W_p dependence.
- Direction and Amplitude of theoretical prediction also agrees.

Experimental result for non-inductive current (2)

- Magnetic axis configuration dependence in NB "balanced" injection -

 <u>NB injection Condition</u> keeps <u>same during above experiment sequence</u> in magnetic axis changing.

Comparison result with theoretical prediction - Magnetic Configuration dependence -

Theoretically predicted in torus outward magnetic axis shift configuration

3.0

2.5

Time (sec)

2.0

MHD activity and rational surface (2)

<u>Theoritical Analysis with</u>

<u>Currentless assumption</u> (MHD equilibrium is calculated using pressure profile obtained by measurement)

- iota=1/2 surface exists (1₀<0.5) both before and after disappearance of 2/1 mode.
- The plasma after disappearance of 2/1 mode is more Mercier unstable than that before disappearance of 2/1 mode

Most probable explanation of 2/1 mode disappearance

Rational Surface (1=1/2)

disappears.

<u>Compare between time trace of central rotational transform</u> <u>based on calculation and MHD activity</u> Basic Equation for Time Evolution Analysis of toroidal current profile

$$\begin{aligned} \blacksquare Diffusion equation of toroidal current I_p(S,t) \\ \mu_0 \frac{\partial I_p}{\partial t} = 4\pi S \frac{\partial}{\partial S} \left[\frac{1}{\sigma} \frac{\partial}{\partial S} (I_p - I_b) \right], \ J_p(S,t) = \frac{\partial}{\partial S} I_p, \ S = \pi r^2 \end{aligned}$$
$$\begin{aligned} \blacksquare Boundary \ condition \\ I_p(0,t) = 0, \quad \frac{\partial}{\partial S} (I_p - I_b) \bigg|_{S = \pi a^2} = \sigma \frac{1}{2\pi R_0} (V_{\text{loop}} - L_{\text{ext}} \dot{I}_p \bigg|_{S = \pi a^2}), \quad L_{\text{ext}} = \mu_0 R_0 \left[\log \frac{8R_0}{a} - 2 \right] \end{aligned}$$
$$\begin{aligned} \blacksquare Initial \ condition \\ J_p(S,0) = J_0(S) \end{aligned}$$

Thermal conductivity (applying neoclassical theory in TOKAMAK)

$$\sigma = \sigma_{spitz} \left(1 - \sqrt{\varepsilon}\right) \left(1 + 0.039\sqrt{\varepsilon}\right) / \left(1 + 0.471\sqrt{\varepsilon}\right), \qquad \text{Experimental Data}$$
$$\sigma_{spitz}^{-1} = 1.65 \times 10^{-9} z_{eff} \ln A / T_e^{3/2}, \quad \ln A = 23 - \ln\left(\sqrt{n_e^{-1} \times 10^{-6}} / T_e^{-1} \times 10^{-3}\right)$$

■Non inductive current 1_b

 $I_{b} = I_{bac} (BS\text{-}current) + I_{beam} (Ohkawa\text{-}current)$

BS current; calculated by SPBSC code Ohkawa current; cal. by MCNBH code (considering orbit and CX loss)

Calculation result of toroidal current evolution

- · Co dominant-NB Injected
- Non inductive current is almost same with time.
- <u>Ohkawa current is decreasing</u> n_e gradually increases
- <u>BS current is increasing with time</u>.
 W_p gradually increases, central n_e profile hollow => flat central T_e profile => peaked

Comparison between time traces of m/n=2/1 magnetic fluctuation and calculated central rotational transform

predicted timing when i=1/2 rational surface disappears.

Summary

We analyze the non-inductive toroidal current in LHD experiments with balanced NB-Injection.

- 1. We experimentally obtain the dependence of non-inductive current on W_p and R_{ax} .
- 2. W_p and R_{ax} dependence agree with theoretical prediction based on BS current for Heliotron devices.

We analyze the MHD activity behavior in high beta LHD experiment with high toroidal current (β >2%, $\Delta\iota(a)$ due to I_p > 0.05) and time evolution of toroidal current profile.

- 1. The possibility of determination of current profile (central rotational transform) by measuring existence of m/n=2/1 in LHD.
- Timing, when m/n=2/1 disappears, agrees with theoretically prediction when ι=1/2 rational surface disappears based on BS-current and Ohkawa current.