Multiscale Modeling of Radiation Damage in Fusion Reactor Materials

Brian D. Wirth, R.J. Kurtz (PNNL), N.M. Ghoniem (UCLA), G.R. Odette (UCSB), D. Srolovitz (Princeton), R.E. Stoller (ORNL), H.M. Zbib (WSU) and S.J. Zinkle (ORNL)

DOE OFES Budget Meeting Science in Technology Seminar 12 March 2002

This work was performed under the auspices of the U.S. Department of Energy and Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

- Introduction to fusion reactor materials and radiation damage processes
- Multiscale modeling approach
- Microstructure evolution in bcc alloys under low to intermediate temperature (T < ~450°C) irradiation
 - Self-interstitial cluster properties, growth and accumulation of dislocation loops
 - Formation of sub-nanometer vacancy-solute clusters
- Impact of microstructure on mechanical property & performance
 - Dislocation defect interactions
 - Constitutive & mechanical property modeling
- Summary & future directions

Fusion materials science program

Similar philosophy for Fusion materials & plasma science programs

	Fusion Plasma Science	Fusion Materials Science		
Basic Goal	Understand 4 th state of mater as it relates to fusion	Understand 1 st state of matter as it relates to fusion		
Key Issues				
 Basic properties and microscopic phenomena 	-particle/energy confinement and transport	 defect properties, dislocation propagation, phonon transport microstructural stability 		
 System properties and macroscopic phenomena 	-MHD stability	- fracture and deformation		
 Creation and sustainment 	-plasma - wave interactions	 physical metallurgy and thermodynamics 		
 Interactions with environment 	- plasma-wall interactions	-corrosion and compatibility; radiation effects on materials		

Fusion materials research must rely heavily on modeling due to inaccessibility of fusion-relevant operating regime

• Extrapolation from currently available parameter space to fusion regime is much larger for fusion materials science than for plasma physics program

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Radiation damage processes

Lack of intense neutron source emphasizes the need for co-ordinated experiment, modeling & theory to develop fundamental understanding of radiation damage

Low T (< ~450°C) irradiated microstructures

- Dominant microstructural features in irradiated bcc (ferritic/ martensitic & Vanadium-based) alloys:
 - nm dislocation loop-complexes
 - nm precipitates
 - sub-nm bubbles & voids, grow w/increasing radiation dose

Loop decoration of dislocations & raft formation

High density of <100> &

		<d> (nm)</d>	N (m⁻³)
Oak Ridge National Laboratory	<100>	20	1x10 ²²
U. S. DEPARTMENT OF ENERGY	<111>	30	5x10 ²¹

Multiscale modeling approach

Computational microscope

Apply complementary experimental measurements, closely coupled to modeling and positron theory

Ab-initio calculations lead to improved V potential

- Different EAM type potentials give very different predictions for Vanadium
- None of the EAM potentials correctly predict the stable form of the interstitial
- New interatomic Vanadium potential fit to experimental data and 1st principles calculations of: cohesive energy, bulk modulus, C₁₁, C₁₂, C₄₄, and vacancy formation energy

	vacancy	[100] split	[110] split	[111] split	[111] crowdion	Octa-hedral	Tetra- hedral
First Principles	2.60	3.57	3.48	3.14	3.15	3.62	3.69
Finnis-Sinclair	2.63	3.60	3.66	3.25	3.21	3.60	3.64

Units: eV

Very good agreement with 1st principles calculations

MD simulations of primary damage production

 Stability of <111> self-interstitial atom (SIA) clusters revealed by recent atomistic modeling (*Finnis-Sinclair and EAM-type interatomic potentials*)

Reaction Kinetics of Interstitial Clusters and Void Lattice Formation

Dislocation loop formation in ferritic steels

Irradiated ferritic steel (Fe-8Cr)

- Large density of <100> loops observed (TEM) at high dose
 - New insight: <100> junctions form through interaction of highly mobile, <111> loops: $\frac{a_o}{2} [111] + \frac{a_o}{2} [1\overline{1}\overline{1}] \rightarrow a_o [100]$

- Junction propagates or dissolves by 2-step mechanism Energy landscape favors <100> growth

Decoration

SIA Cluster Interaction with Dislocation Demonstrating the Importance of Cluster Rotation on Dislocation Decoration

- Radiation damage produces primary defects (vacancies & self-interstitials) in highly non-equilibrium, spatially correlated process
- Self-interstitial clusters in Fe-alloys formed with a/2<111> Burgers vector, undergo easy 1-dimensional glide
- At high dose (> ~0.1 dpa) in Fe-alloys, collisions between <111> loops result in the formation of dislocation loops with Burgers vector a<100>
- <111> loops which escape collision migrate to dislocations forming loop rafts which decorate dislocations
- Remaining vacancies cluster to form small 3-dimensional nanovoids

Impact on mechanical properties

- Irradiation-produced nanostructures impede dislocation motion & significantly impact mechanical properties & structure performance
 - hardening, decreased ductility, yield drops and dislocation channeling

Edge dislocation - SFT interaction (Cu)

 Atomistic (MD) simulations of individual dislocation - obstacle interactions provide fundamental understanding of radiation hardening and flow localization phenomena

Dislocation - SFT interaction (300 MPa)

near - <111> projection

• SFT is a relatively strong obstacle $\phi \sim 80^{\circ}$

• SFT sheared but neither absorbed or destroyed

Dislocation - SFT interaction movie

Decouple Multiscale Localization Mechanisms

• Isolate and properly integrate *multiscale* parts - and determine what controls observables

Understanding Loss of Uniform Strain Capacity

0.4

Micromechanics of Universal MC Shape & Shifts

Atomic scale dislocation-bond breaking processes modeled as the basis for the existence of a universal master toughness-temperature shape and magnitude of the shift due to irradiation hardening

Summary & future focus

- Radiation damage is inherently multiscale phenomena US Fusion Materials program applying multiscale modeling, closely coupled with theory & experiments to develop *fundamental understanding of radiation damage in structural alloys*
- Examples of radiation damage in bcc alloys at T <~450°C
 - nanostructural dislocation loop evolution
 - sub-nanometer vacancy cluster formation
- effect of nanometer defect clusters on dislocation motion (hardening)
- impact of radiation hardening on deformation & failure
- Future focus -> Investigate the impact of high He production rates on bcc alloy material evolution, properties and performance

Oak Ridge National Laboratory U. S. Department of Energy

Displacement Fields of Helium in Iron

Point defect displacement fields are well approximated by line force dipoles. Fits of atomistic He displacement fields to dipole equations enables calculation of interaction energies and forces between helium atoms and other microstructural features at higher length and time scales.

Atomic Model of Octahedral Interstitial He in Fe

U.S. Department of Energy Pacific Northwest National Laboratory

Mechanisms of Dislocation Unlocking from Cluster Atmospheres

Z=D=40, L=50,b=1/2(-101),Stress = 200 MPa, Attractive Clusters