PRODUCING AND UNDERSTANDING A SUSTAINED FUSION HEATED PLASMA IS A GRAND CHALLENGE PROBLEM FOR FIELD OF PLASMA PHYSICS...

... and we are ready to take this step!
DT FUSION

\[_1D^2 + _1T^3 \rightarrow _2He^4 + _0n^1 \]

(3.5 MeV) (14.1 MeV)

Energy/Fusion: \(\varepsilon_f = 17.6 \text{ MeV} \)

Fusion Reaction Rate, \(R \)
for a Maxwellian

\[
R = \int \int \sigma (v') v' f_D (\tilde{v}_D) f_T (\tilde{v}_T) d^3 \tilde{v}_D d^3 \tilde{v}_T
\]

where \(\tilde{v}' \equiv \tilde{v}_D - \tilde{v}_T \)

\[
R = n_D n_T \langle \sigma v \rangle
\]
FUSION “SELF-HEATING” POWER BALANCE

FUSION POWER DENSITY: \(p_f = R \varepsilon_f = \frac{1}{4} n^2 \langle \sigma v \rangle \varepsilon_f \) for \(n_D = n_T = \frac{1}{2} n \)

TOTAL THERMAL ENERGY IN FUSION FUEL,

\[W = \int \left\{ \frac{3}{2} nT_i + \frac{3}{2} nT_e \right\} d^3x = 3nTV \]

DEFINE “ENERGY CONFINEMENT TIME”, \(\tau_E \equiv \frac{W}{P_{\text{loss}}} \)

ENERGY BALANCE

\[\frac{dW}{dT} = \left\{ \frac{1}{4} n^2 \langle \sigma v \rangle \varepsilon_\alpha V + P_{\text{heat}} \right\} - \frac{W}{\tau_E} \]

\(\alpha \)-heating power
Additional heating input
loss rate
STEADY-STATE FUSION POWER BALANCE

\[
\frac{dW}{dt} \rightarrow 0 \implies P_\alpha + P_{\text{heat}} = \frac{W}{\tau_E}
\]

Define fusion energy gain, \(Q \equiv \frac{P_{\text{fusion}}}{P_{\text{heat}}} = \frac{5 P_\alpha}{P_{\text{heat}}} \)

Define \(\alpha \)-heating fraction, \(f_\alpha \equiv \frac{P_\alpha}{P_\alpha + P_{\text{heat}}} = \frac{Q}{Q+5} \)

Scientific Breakeven

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(f_\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17%</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
</tr>
<tr>
<td>10</td>
<td>60%</td>
</tr>
<tr>
<td>20</td>
<td>80%</td>
</tr>
<tr>
<td>(\infty)</td>
<td>100%</td>
</tr>
</tbody>
</table>

Burning Plasma Regime
PARAMETERIZATION OF Q VERSUS $nT\tau_E$ OR $P\tau_E$

Recast power balance: \[P_\alpha + P_{\text{heat}} = \frac{W}{\tau_E} \]

\[nT\tau_E = p\tau_E = \frac{12T^2}{<\sigma v> \varepsilon_\alpha (1 + \frac{5}{Q})} \]

Useful since in 10–20 keV range where $p\tau_E$ is minimum for given Q

$<\sigma v> \propto T^2$

and p is limited by MHD stability in magnetically confined plasmas

Ignition $Q = \infty \Rightarrow p\tau_E > \frac{12T^2}{<\sigma v> \varepsilon_\alpha}$
OUTLINE

• BASIC REQUIREMENTS FOR A BURNING PLASMA
• FRONTIER SCIENCE ISSUES: WHAT DO WE WANT TO KNOW?
• Q~1 RESULTS: AT THE THRESHOLD
• Q~5: α-EFFECTS ON TAE STABILITY
• Q~10: STRONG NON-LINEAR COUPLING
• Q\(\geq\)20: BURN CONTROL & IGNITION
• TAKING THE “NEXT STEP”
Burning Plasma is a New Regime: Fundamentally Different Physics

New Elements in a Burning Plasmas:

- Self-Heated by Fusion Alphas
- Significant Isotropic Energetic Population of 3.5 MeV Alphas
- Larger Device Scale Size

Plasma is now an Exothermic Medium & Highly Non-Linear

Combustion Science ≠ Locally Heated Gas Dynamics

Fission Reactor Fuel Physics ≠ Resistively Heated Fuel Bundles
There are two types of burning plasma issues...

- **Getting There & Staying There:**
 + Density, Temperature, and τ_E required for $Q \geq 5$
 + MHD Stability at required pressure for $Q \geq 5$
 + Plasma equilibrium sustainment ($\tau > \tau_{\text{skin}}$)
 + Power, fueling, & reaction product control

- **New Science Phenomena to be Explored**
 + $Q \geq 5$: Alpha effects on stability & turbulence
 + $Q \geq 10$: Strong, non-linear coupling between alphas, pressure driven current, turbulent transport, MHD stability, & boundary-plasma
 + $Q \geq 20$: Stability, control, and propagation of the fusion burn and fusion ignition transient phenomena
IMPORTANT PHYSICAL PROPERTIES OF \(\alpha \)-HEATING

- **FOR Q \(\sim \) 10:** \(nT\tau_E \sim 2 \times 10^{21} \text{ m}^{-3} \text{ keV s} \) for \(T \sim 10 \text{ keV} \)
 + WHEN NON-IDEAL EFFECTS (PROFILES, \text{HE} ACCUMULATION, IMPURITIES) SOMEWHAT LARGER VALUE \(\sim 3 \times 10^{21} \text{ m}^{-3} \text{ keV s} \)
- **FOR TOKAMAK "TYPICAL" PARAMETERS AT Q \(\sim \) 10**
 \(n \sim 2 \times 10^{20} \text{ m}^{-3} \quad T \sim 10 \text{ keV} \quad \tau_E \sim 1.5 \text{ s} \)
- **BASIC PARAMETERS OF DT PLASMA AND \(\alpha \)**
 \(V_{Ti} \sim 6 \times 10^5 \text{ m/s} \quad V_\alpha \sim 1.3 \times 10^7 \text{ m/s} \quad V_{Te} \sim 6 \times 10^7 \text{ m/s} \)
 Note at \(B \sim 5 \text{ T} \): \(V_{\text{Alfvén}} \sim 5 \times 10^6 \text{ m/s} \quad < V_\alpha \)
- **CAN IMMEDIATELY DEDUCE:**
 1) \(\alpha \)-PARTICLES MAY HAVE STRONG RESONANT INTERACTION WITH \(\text{ALFVÉN WAVES} \).
 2) \(T_i \sim T_e \) since \(V_\alpha >> V_{Ti} \) AND \(m_\alpha >> m_e \) THE \(\alpha \)-PARTICLES SLOW PREDOMINANTLY ON ELECTRONS.
Tokamak experiments have approached $Q \sim 1$ regime.
$Q \leq 1$ Results from TFTR and JET

At the Burning Plasma Threshold
<table>
<thead>
<tr>
<th></th>
<th>TFTR</th>
<th>JET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Transient Q</td>
<td>0.27</td>
<td>0.61</td>
</tr>
<tr>
<td>α Confinement</td>
<td>Classical</td>
<td>Classical</td>
</tr>
<tr>
<td>α Slowing Down</td>
<td>Classical</td>
<td>Classical</td>
</tr>
</tbody>
</table>
FUSION ALPHAS ARE CONFINED AND SLOW DOWN CLASSICALLY IN TFTR

- JET reports same conclusion using detailed modeling of α-heating power balance.
DT EXPERIMENTS ON TFTR AND JET

<table>
<thead>
<tr>
<th></th>
<th>TFTR</th>
<th>JET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Transient Q</td>
<td>0.27</td>
<td>0.61</td>
</tr>
<tr>
<td>α Confinement</td>
<td>Classical</td>
<td>Classical</td>
</tr>
<tr>
<td>α Slowing Down</td>
<td>Classical</td>
<td>Classical</td>
</tr>
<tr>
<td>α Heating Observed</td>
<td>Yes, but weak</td>
<td>Yes</td>
</tr>
</tbody>
</table>
JET DT EXPERIMENTS SHOW α-HEATING OF CENTRAL ELECTRONS

- D/T ratio varied & maximum $\Delta T_e \sim 3$ keV at 60% T
DT EXPERIMENTS ON TFTR AND JET

<table>
<thead>
<tr>
<th></th>
<th>TFTR</th>
<th>JET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Transient Q</td>
<td>0.27</td>
<td>0.61</td>
</tr>
<tr>
<td>α Confinement</td>
<td>Classical</td>
<td>Classical</td>
</tr>
<tr>
<td>α Slowing Down</td>
<td>Classical</td>
<td>Classical</td>
</tr>
<tr>
<td>α Heating Observed</td>
<td>Yes, but weak</td>
<td>Yes</td>
</tr>
<tr>
<td>α Driven Alfven Waves in Highest P_α Plasmas</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
No α-driven Alfvénic Instabilities seen in TFTR and JET in highest fusion power DT plasmas

- AE stable due to strong damping by beam and plasma ions in NBI heated hot ion mode plasmas.

- AE modes were observed in equilibria with low shear and higher central q just after NBI turned off.
DT EXPERIMENTS ON TFTR AND JET

<table>
<thead>
<tr>
<th></th>
<th>TFTR</th>
<th>JET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Transient Q</td>
<td>0.27</td>
<td>0.61</td>
</tr>
<tr>
<td>α Confinement</td>
<td>Classical</td>
<td>Classical</td>
</tr>
<tr>
<td>α Slowing Down</td>
<td>Classical</td>
<td>Classical</td>
</tr>
<tr>
<td>α Heating Observed</td>
<td>Yes, but weak</td>
<td>Yes</td>
</tr>
<tr>
<td>α Driven Alfven Waves in Highest P_α Plasmas</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>T_i</td>
<td>36 keV</td>
<td>28 keV</td>
</tr>
<tr>
<td>T_e</td>
<td>13 keV</td>
<td>14 keV</td>
</tr>
<tr>
<td>n</td>
<td>1×10^{20} m$^{-3}$</td>
<td>0.4×10^{20} m$^{-3}$</td>
</tr>
<tr>
<td>$nT\tau$</td>
<td>4.3×10^{20} m$^{-3}$ keVs</td>
<td>8.3×10^{20} m$^{-3}$ keVs</td>
</tr>
<tr>
<td>f_α</td>
<td>5%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>[~2MW]</td>
<td>[~3 MW]</td>
</tr>
</tbody>
</table>
Q ~ 5: α-effects on TAE stability
ALPHA PARTICLE EFFECTS: KEY DIMENSIONLESS PARAMETERS

Three dimensionless parameters will characterize the physics of alpha-particle-driven instabilities:

- **Alfven Mach Number**: \(V_\alpha/V_\mathrm{A}(0) \)
- **Number of Alpha Lamor Radii (inverse)**: \(\rho_\alpha/a \)
- **Maximum Alpha Pressure Gradient (scaled)**: \(\text{Max } R \nabla \beta_\alpha \)

<table>
<thead>
<tr>
<th>Range of Interest (e.g. ARIES-RS/AT)</th>
<th>ITER-FEAT (reference)</th>
<th>FIRE (reference)</th>
<th>JET</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_\alpha/V_\mathrm{A}(0))</td>
<td>(\approx 2.0)</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>(\rho_\alpha/a)</td>
<td>(\approx 0.02)</td>
<td>0.016</td>
<td>0.028</td>
</tr>
<tr>
<td>(\text{Max } R \nabla \beta_\alpha)</td>
<td>0.03–0.15*</td>
<td>0.05</td>
<td>0.035</td>
</tr>
</tbody>
</table>
Geometric Effects on Alfvén Waves

- Uniform Slab \(\omega = k_{\parallel} V_A \)

- 1D cylinder \(\omega = k_{\parallel} V_A (r) \)

- Continuous spectrum, shear Alfvén resonance
GEOMETRIC EFFECTS ON ALFVEN WAVES

Add 2D toroidal effects:

- Periodic boundary conditions for toroidal mode number, \(n \), and poloidal mode number, \(m \)

- \(m \) and \(m+1 \) are coupled and a “gap” is opened in the otherwise continuous spectrum
GEOMETRIC EFFECTS ON ALFVEN WAVES

Add elliptical cross-section effects:

- \(m \) and \(m+2 \) are now coupled and an elliptical “gap” is opened in the continuous spectrum

Add triangularity cross-section effects:

- \(m \) and \(m+3 \) are now coupled and an triangularity “gap” is opened in the continuous spectrum
Discrete Modes Appear in Gaps in the Continuum:

- Alfvén wave continuum is strongly damped.
- TAE gap-modes are less damped: free energy from ∇p_α tapped by wave/particle resonance drive from α-particles may destabilize these modes.
BASIC ALFVEN EIGENMODE PHYSICS EXTENDS TO RANGE OF TOROIDAL CONFIGURATIONS

Tokamak:

Spherical Torus:

Stellarator:

- Details of spectra differ but underlying physics and modeling tools are common.
New Alpha Effects Expected on Scale of Burning Plasma

• Present experiments show alpha transport due to only a few global modes.

• Smaller value of $\rho_\alpha/\langle a \rangle$ in a Burning Plasma may lead to a “sea” of resonantly overlapping unstable modes & possible large alpha transport.

• Reliable simulations not possible...needs experimental information in new BP regime.
$Q \sim 10$: Strong Non-Linear Coupling
Burning Plasma System is Highly Non-Linear...

Basic Coupling of Fusion Alpha Heating:
Burning Plasma System is Highly Non-Linear...

Add Alpha Driven TAE Modes:

- Ion Temperature T_i
- Fusion Reaction Rate: P_α
- TAE Modes
- α-losses

τ_{ei}
$R \nabla \beta_\alpha$
BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD COMPLEX PHYSICS OF ALPHA DRIVEN TAE MODES:

- Ion Temperature T_i
- Fusion Reaction Rate: P_α
- τ_{ei}
- T_e
- $\tau_{\alpha e}$
- α-losses
- TAE Modes
 - Geometry Effects
 - Resonant Excitation
 - Damping
 - Nonlinear Saturation
Burning Plasma System is Highly Non-Linear...

Add Complex Physics of Alpha Driven TAE Modes:

Ion Temperature T_i

Fusion Reaction Rate: P_α

$\tau_{ ei}$

$\tau_{ ae}$

T_e

α-losses

TAE Modes

Geometry Effects
Resonant Exitation
Damping
Nonlinear Saturation

No Longer Predictive inScale Size of Burning Plasma Regime
MAJOR DISCOVERY OF THE 1990’s: ION TURBULENCE CAN BE ELIMINATED

- Color contour map of fluctuation intensity as function of time from FIR scattering data
 - Higher frequencies correspond to core, low to edge

- Total ion thermal diffusivity at time of peak performance
 - $H = 4.5$ $W = 4.2$ MJ
 - $\beta = 6.7\%$ $\beta_N = 4.0$

NCS H–mode edge

$\chi_i^{\text{tot}} = \frac{Q_i}{n_i} \nabla T_i$

Neoclassical

Experiment

- Neutron Rate (x10^{16}/s)
 - Neutron Rate (x10^{16}/s)

Time (ms)

Neutron Rate (x10^{16}/s)

RADIUS (NORM.)
SHEARED FLOW CAUSES TRANSPORT SUPPRESSION

Gyrokinetic Theory

- Simulations show turbulent eddies disrupted by strongly sheared plasma flow

Experiment

- Turbulent fluctuations are suppressed when shearing rate exceeds growth rate of most unstable mode

Simulations show turbulent eddies disrupted by strongly sheared plasma flow.
Combination of Turbulence Suppression & Bootstrap Current Leads to Steady-State Advanced Tokamak

- Data from JT-60U shows sustained transport barrier and 100% non-inductive current drive
PLASMA BOUNDARY PHYSICS: HEAT REMOVAL & CONFINEMENT

EDGE PEDESTAL STRONGLY COUPLED TO CONFINEMENT:

Internal ∇T limited by microturbulence so edge T controls central fusion reactivity:

$$P_{\text{FUSION}} \sim [T_{\text{EDGE}}]^7$$

HEAT REMOVAL SOLUTIONS

Trend to high edge density — but bootstrap current sustained steady-state plasmas trend towards lower edge density:

Compatibility an open issue in burning plasma regime

ENERGETIC IONS MODIFY Δ: COUPLING TO α-PARTICLES.
Pedestal Temperature Requirements for Q=10

<table>
<thead>
<tr>
<th>Device</th>
<th>Flat ne*</th>
<th>Peaked ne*</th>
<th>Peaked ne w/ reversed q</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGNITOR*</td>
<td>5.1</td>
<td>5.0</td>
<td>5.1 keV</td>
</tr>
<tr>
<td>FIRE</td>
<td>4.1</td>
<td>4.0</td>
<td>3.4 keV</td>
</tr>
<tr>
<td>ITER-FEAT†</td>
<td>5.8</td>
<td>5.6</td>
<td>5.4 keV</td>
</tr>
</tbody>
</table>

* flat density cases have monotonic safety factor profile

* $n_{eo} / n_{ped} = 1.5$ with n_{ped} held fixed from flat density case

† 10 MW auxiliary heating

‡ 11.4 MW auxiliary heating

†† 50 MW auxiliary heating
ADVANCED TOKAMAK NONLINEAR TRANSPORT COUPLINGS

Thermonuclear Heating
Advances Tokamak Nonlinear Transport Couplings

Auxiliary Heating

External

Internal

Thermonuclear Heating

Profiles: p, T, n, v_φ

p, T, n, v_φ

Anomalous & Neoclassical heat, particle and v_φ diffusion

p, T, n

P_{tot}

Fast, Blue heat and v_φ transport cycle
ADVANCED TOKAMAK NONLINEAR TRANSPORT COUPLINGS

- **Auxiliary Heating**
- **Auxiliary Angular Momentum**
- **Anomalous & Neoclassical heat, particle and v_ϕ diffusion**
- **Turbulent and Neoclassical transport coefficients χ**
 - Poloidal field dependence
 - Velocity shear stabilization

Fast, **Blue** heat and v_ϕ transport cycle

Temperature profiles couple **magnetic** and heat diffusion loops
ADVANCED TOKAMAK NONLINEAR TRANSPORT COUPLINGS

- Transformer source of poloidal flux
- Auxiliary Current Drive
- Auxiliary Heating
- Auxiliary Angular Momentum

Profiles: \(p, T, n, \Phi \)

- Neoclassical poloidal flux diffusion
- Bootstrap Current
- Conductivity profile
- Turbulent and Neoclassical transport coefficients \(\chi \)
 - Poloidal field dependence
 - Velocity shear stabilization

\(V_{\text{loop}} \), \(j_{\text{cd}} \), \(j_{\text{Oh}} \), \(j_{\text{bs}} \)

Temperature profiles couple magnetic and heat diffusion loops

Slow, red magnetic flux diffusion loop

Fast, Blue heat and \(v_{\phi} \) transport cycle
Q > 20:

Burn Control & Ignition Transient Phenomena
TRANSIENT BURN PHENOMENA WHEN $Q \geq 20$

Time dependent energy balance:

$$\frac{d}{dt} [3 \, nT] = \frac{1}{4} \, n^2 \varepsilon \alpha \, V <\sigma v> + P_{\text{heat}} - \frac{3 \, nT}{\tau_E (n,T)}$$

- At fixed n and high Q system can be thermally unstable

Solve for P_{heat} in steady-state:

$$P_{\text{heat}} = \frac{3 \, nT}{\tau_E (n,T)} - \frac{1}{4} \, n^2 \varepsilon \alpha \, V <\sigma v>$$
TRANSIENT BURN PHENOMENA WHEN $Q \geq 20$

Time dependent energy balance:
\[
\frac{d}{dt} [3 \, nT] = \frac{1}{4} \, n^2 \epsilon_\alpha V \langle \sigma v \rangle + P_{\text{heat}} - \frac{3 \, nT}{\tau_E(n,T)}
\]

- At fixed n and high Q system can be thermally unstable

Solve for P_{heat} in steady-state:
\[
P_{\text{heat}} = \frac{3 \, nT}{\tau_E(n,T)} - \frac{1}{4} \, n^2 \epsilon_\alpha V \langle \sigma v \rangle
\]
TRANSIENT BURN PHENOMENA WHEN $Q \geq 20$

Time dependent energy balance:
\[
\frac{d}{dt} [3 \, nT] = \frac{1}{4} \, n^2 \varepsilon_\alpha \, V \, \langle \sigma v \rangle + P_{\text{heat}} - \frac{3 \, nT}{\tau_E (n, T)}
\]

- At fixed n and high Q system can be thermally unstable

Solve for P_{heat} in steady-state:
\[
P_{\text{heat}} = \frac{3 \, nT}{\tau_E (n, T)} - \frac{1}{4} \, n^2 \varepsilon_\alpha \, V \, \langle \sigma v \rangle
\]
MORE “REALISTIC” POWER BALANCE

- ITER POPCON Power Balance Analysis

- Additional limits on density, pressure, & power thresholds constrain operating space.
FUSION “BURN” PROPAGATION AT HIGH Q

Deflagration – sub-sonic

- Mediated by diffusive thermal conductivity, χ

\[\delta \sim \sqrt{\frac{\chi W}{P_f}} \]

\[V_b \sim \frac{\delta}{\tau_{\text{burn}}} \sim \sqrt{\frac{\chi P_f}{W}} \]

\[\tau_d \sim \frac{\delta^2}{\chi} \]

\[\tau_{\text{burn}} \sim \frac{W}{P_f} \]
FUSION BURN PROPAGATION AT HIGH Q

• EXAMPLE PARAMETERS

\[n \sim 4 \times 10^{20} \text{ m}^{-3} \]
\[T \sim 20 \text{ keV} \quad \delta \sim 0.2 \text{ m} \]
\[P_\alpha \sim 10 \text{ MW/m}^3 \quad V_b \sim 0.5 \text{ m/s} \]
\[W = 3nT \sim 3.8 \text{ MJ/m}^3 \]
\[\chi \sim 0.1 \text{ m}^2/\text{s} \]
Comments on “Next Steps” for Study of Burning Plasmas
Major Advances & Discoveries of 90’s Lay Foundation for Next Step Burning Plasma Experiments

Burning Plasma Experiment

MHD
- q-profile control and measurement
- steady-state, bootstrap equilibria
- active mode control of kink & tearing

Transport & Turbulence
- shear-flow turbulence suppression
- gyro-kinetic theory based models
- extensive data-base models on transport using dimensionless scaling

Wave/Particle Interactions
- alpha heating in DT found to be classical for $Q \leq 1$
- “standard model” of Alfvén Eigenmodes
- LHCD & ECCD used for near SS & mode control

Plasma Wall Interactions
- detached divertor demonstrated
- large scale models developed
- high heat-flux metallic technology developed
Modest Confinement Extrapolation Needed for BP

Dimensionless Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_c \tau = B \tau$</td>
<td></td>
</tr>
<tr>
<td>$\rho^* = \rho / a$</td>
<td></td>
</tr>
<tr>
<td>$\nu^* = \nu_c / \nu_b$</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
</tr>
</tbody>
</table>

Similarity Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B R^{5/4}$</td>
<td></td>
</tr>
</tbody>
</table>

Kadomtsev, 1975
Burning Plasma Physics - The Next Frontier

Three Options (same scale)

FIRE
US Based
International Modular Strategy

ITER-FEAT
JA, EU or CA Based
International Partnership

IGNITOR
Italian Based
International Collaboration
The U.S. Fusion Energy Sciences Program should establish a proactive U.S. plan on burning plasma experiments and should not assume a default position of waiting to see what the international community may or may not do regarding the construction of a burning plasma experiment. If the opportunity for international collaboration occurs, the U.S. should be ready to act and take advantage of it but should not be dependent upon it. The U.S. should implement a plan as follows to proceed towards construction of a burning plasma experiment:

- Hold “Snowmass-style” community meeting
- Carry out uniform technical assessment by NSO activity
- Request FESAC “action panel” to select preferred BP option
- National Research Council review of BP plans
Plan Prescribed in HR4

a) Plan for United States Fusion Experiment - The Secretary, on the basis of full consultation with the Fusion Energy Sciences Advisory Committee and the Secretary of Energy Advisory Board, as appropriate, shall develop a plan for United States construction of a magnetic fusion burning plasma experiment for the purpose of accelerating scientific understanding of fusion plasmas. The Secretary shall request a review of the plan by the National Academy of Sciences, and shall transmit the plan and the review to the Congress by July 1, 2004.

(b) Requirements of Plan - The plan described in subsection (a) shall--

(1) address key burning plasma physics issues; and

(2) include specific information on the scientific capabilities of the proposed experiment, the relevance of these capabilities to the goal of practical fusion energy, and the overall design of the experiment including its estimated cost and potential construction sites.

(c) United States Participation in an International Experiment - In addition to the plan described in subsection (a), the Secretary, on the basis of full consultation with the Fusion Energy Sciences Advisory Committee and the Secretary of Energy Advisory Board, as appropriate, may also develop a plan for United States participation in an international burning plasma experiment for the same purpose, whose construction is found by the Secretary to be highly likely and where United States participation is cost effective relative to the cost and scientific benefits of a domestic experiment described in subsection (a). If the Secretary elects to develop a plan under this subsection, he shall include the information described in subsection (b), and an estimate of the cost of United States participation in such an international experiment. The Secretary shall request a review by the National Academies of Sciences and Engineering of a plan developed under this subsection, and shall transmit the plan and the review to the Congress not later than July 1, 2004.
Recommended US Plan for Burning Plasmas

2001 2002 2003 2004 2005

Community Outreach and Involvement

NSO Assessment
Snowmas 2002

FESAC Action
NRC Review

DOE Decision Process

ITER - EDA

ITER Negotiations

FY05 DOE
FY05 Cong
FY05 Appropriations
Construction Started

FY06 DOE
FY06 Cong
FY06 Appropriations
Construction Started

Background
The 2002 Fusion Summer Study will be a forum for the critical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long range planning activities undertaken by the DOE and the FESAC. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy.

This meeting is open to every member of the fusion energy science community and significant international participation is encouraged.

Program Committee Co-Chairs:
Roger Bangerter, Lawrence Berkeley National Laboratory
Gerald Navratil, Columbia University
Ned Sauthoff, Princeton University

Endorsed by: US Department of Energy and The American Physical Society

CONCLUDING COMMENTS

• **Burning Plasma Studies** open a new regime of plasma physics of an exothermic medium:

 ... is the grand challenge problem in field of plasma physics.

• **Physics basis** for burning plasma step was nearly in hand in 1986 with proposals for CIT & later BPX: if built we now know it would have reached $Q > 5$.

• **Dramatic progress** in 1990’s has established a sound basis for exploration of the Burning Plasma regime.

• **Fusion Community meeting** at Snowmass in July 2002 to prepare input for FESAC plan for a Burning Plasma Experiment to be reviewed by the National Academy.