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Fusion Prior to Geneva 1958

• A period of rapid progress in science and technology
– N-weapons, N-submarine, Fission energy, Sputnik, transistor, ....

• Controlled Thermonuclear Fusion had great potential
– Uncontrolled Thermonuclear fusion demonstrated in 1952
– Much optimism in the early 1950s with expectation for a quick solution
– Political support and pressure for quick results (but budgets were low,

$56M for 1951-1958)
– Many very  “innovative” approaches were put forward
– Early fusion reactors - Thomson, Tamm/Sakharov, Spitzer

• Reality began to set in by the mid 1950s
– Collective effects - MHD instability (1954)
– Strong fluctations and Bohm diffusion were ubiquitous
– Meager plasma physics understanding led to trial and error approaches
– A multitude of experiments were tried and ended up far from fusion

conditions
– Magnetic Fusion research in the U.S. declassified in 1958
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Fusion Plasma Physics, a New Scientific
Discipline, was born in the 1960s

• Theory of Fusion Plasmas
– Energy Principle developed in mid-50s became a powerful tool for assessing macro-

stability of various configurations
– Resistive macro-instabilities
– Linear stability analyses for idealized geometries revealed a plethora of

microinstabilities with the potential to cause anomalous diffusion Trieste School
– Neoclassical diffusion developed by Sagdeev and Galeev
– Wave propagation became basis for RF heating

• Experimental Progress (some examples)
– Most confinement results were were dominated by instabilities and ~ Bohm diffusion
– Stabilization of interchange instability by Min|B| in mirror - Ioffe
– Stabilization of interchange in a torus by Min<B> in multipoles - Kerst/Ohkawa
– Quiescent period in Zeta due to strong magnetic shear in self-organized state
– Several levitated superconducting mulitpoles built 1970-74(LSP,LNL-Lev, Cul Lev,

FM-I) were used to study connection between turbulence and transport.
– Confinement gradually increased from 1 τB to 300 τB for low temp plasmas
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Stabilization of MHD Interchange by Geometry
(minimum |B|) in a Mirror Machine

• IOFFE IAEA Salzburg 1961,  J Nuc Energy Pt C  7, p 501  1965
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1968-69 T-3 Breaks Bohm, Tokamaks Proliferate

•  Hints of a major advance at IAEA Novosibirsk 1968, but skeptics abound

•  Thomson Scattering (Peacock/Robinson) Dubna 1969 confirms Te ≈ 1 keV

•  Energy confinement ≈ 30 τB - Bohm barrier broken for a hot plasma

•  Skeptics converted to  advocates overnight, the phone lines from Dubna  to
Princeton were busy with instructions to modify Model C.

40 years ago

From Braams and Stott
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Model C Stellarator
1969

Symmetric Tokamak (ST)
1970

Model C Stellarator Converted to Tokamak in 6 months

T-3 results are quickly reproduced
and extended.
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1968-69 T-3 Breaks Bohm, Tokamaks Proliferate

•  Hints of a major advance at IAEA Novosibirsk 1968, but skeptics abound

•  Thomson Scattering (Peacock/Robinson) Dubna 1969 confirms Te ≈ 1 keV

•  Energy confinement ≈ 30 τB - Bohm barrier broken for a hot plasma

•  Skeptics converted to  advocates overnight, Model C Stellarator converted
to Symmetric Tokamak (ST) in 6 months, T-3 results are quickly reproduced.

• During the 1970’s ~  many medium size (Ip < 1 MA) tokamaks (TFR, JFT-2a,
Alcator A, Alcator C, ORMAK, ATC, PLT, DITE,  DIII, PDX, ASDEX, ... were
built with the objectives of :

• Confinement scaling with size, Ip, n, T,.......

• Auxiliary heating (compression, ICRF, NBI, ECRH, LH )

• Current Drive (LH, NBI, ... )

• Impurity control (limiters, divertors)

40 years ago
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Fusion was Prepared for a Major Next step
when Opportunity Knocked (1973 Oil Embargo)

• Amid calls for increased energy R&D, Fusion budgets rise sharply
   -  US Fusion budget increased a factor of 15 in 10 yrs.

• Four Large Tokamaks approved for construction less than a decade after T-3

• TFTR conservative physics/strong aux heating  const began 1976

• JET shaped plasma - const began 1977

• JT-60 poloidal divertor- const began 1978

• T-15 Superconducting TF (NbSn) const began 1979

These were very large steps, taken before all the R&D was
completed.

Plasma Current 0.3 MA   =>    3MA to 7MA
Plasma Volume     1 m3   =>  35 m3 to 100 m3

Auxiliary Heating 0.1 MW  =>  20 MW to 40 MW

J. Willis, MacFusion
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Optimism about Confinement Increased in
the late 1970s

• Trapped Ion instabilities were predicted in the early 1970s to be a threat to the
achievement high Ti in tokamak geometries.

• In 1978, Ti ~ 5.8 keV was achieved in a collisionless plasma reducing concerns
about Trapped Ion instabilities.  Ti was increased to 7 keV in 1980.

• In ~ 1979 Alcator A with only ohmic heating achieved nτE ≈ 1.5 x 1019 m-3 s,
consistent with  optimistic scaling τE ~ na2.

30 years ago
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Auxiliary Heating Reveals New Trends 1981

• Auxiliary heating allowed controlled experiments to reveal the scaling of
the global global confinement time.

• Confinement degradation observed as heating power was increased -
Low mode scaling would threaten objectives of the large tokamaks, and
tokamak based reactors.

τ*E

ISX-B
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H-Mode Discovered on ASDEX- 1982 

• Facilitated new insights and understanding of transport, and

• Provided the baseline operating mode for ITER

F. Wagner, IPP



Four Large Tokamaks Completed in 1980s 

After about 6 years of construction TFTR, JET and JT-60  began operation in 1982-84.

After about 9 years, T-15 completed.

TFTR JET

JT-60 T-15
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Large Tokamaks Extend Plasma Parameters

• By the mid 80s, after  4 years of operation the plasma parameter range
had been significantly extended
– Ti~ 20 keV and ne(0)τE ~ 1.5x1019 m-3 s with neutral beam injection
– ne(0)τE ~ 1.5x1020 m-3 s  and Ti~ 1.5 keV with pellet injection
– H-Mode extended to large tokamaks, new improved performance regimes

discovered.
– Bootstrap current  and current drive extended to MA levels
– Divertor extended to large scale

• Complex Technology demonstrated at large scale

• Enabling Technology - Neutral beams, RF heating, pellet injection,
plasma facing components

More than 20 years ago
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Significant Fusion Power (>10MW) Produced in 1990s

• 1991 JET  90/10-DT, 2 MJ/pulse, Q ~ 0.15, 2 pulses

• 1993-97 TFTR 50/50-DT, 7.5MJ/pulse, 11 MW, Q ~ 0.3, 1000 D-T pulses,
– Alpha heating observed, Alpha driven TAEs  - alpha diagnostics
– ICRF heating scenarios for D-T
– 1 MCi (100 g) of T throughput, tritium retention
– 3 years of operation with DT, and then decommissioned.

• Advanced Tokamak Mode Employed for High Performance
– Improved ion confinement TFTR, DIII-D,  QDTequiv ~ 0.3 in DIII-D 1995
– nτET record => QDTequiv in JT-60U DD using AT mode 1996
– Bootstrap and current drive extended

• 1997 JET 50/50-DT  22MJ/pulse, 16 MW, Q ~ 0.65,  ~100 D-T pulses
– Alpha heating extended, ICRF DT Scenarios extended,
– DT pulse length extended
– Near ITER scale D-T processing plant (Also TSTA)
– Remote handling

More than 10 years ago
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Fusion  Temperatures Attained,
Fusion Confinement One Step Away
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Power Plant 
Break-Even 

Tokamak '60

ʼTokamak 70

LHD(JA)

GAMMA-10(JA)

Helical '00

JFT-2M(JA)

Tokamak '80

TFTR(US)
FTU(EU)

C-Mod(US)

ASDEX-U(EU)

DIII-D(US)

JT-60 (JA)

JT-60 (JA)
TFTR(US)

JET(EU) 

Reverse Field 
Pinch

Tokamak '90Tokamak '90

Plasma  Temperature (keV)
10-1 1 10 1 10 2‘58

Alcator C - 1983

10 -3

10 -1

10 0

10 -4

10 -2

10 1

(1020 m-3 s)

ni(0)τE ni(0)τETi  
increased by ~107

since  1958

JAEA
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The Next Step Burning Plasmas
• 1980 - Fusion Engineering Device (FED), SC or Cu coils, 200 MW, 200s as

part of MFE Act  to be competed after expenditure of  $1.6B

• 1984 - Tokamak Fusion Core experiment (TFCX), SC coils, 200 MW,   ss
estimated cost $1.7B - cancelled too expensive

• 1986 - Compact Ignition Tokamak (CIT), LN Cu coils - 400 MW, 5 s, $0.7B

• 1989 - CIT was in FY89 budget with PACE funding for design, but was
withdrawn by DOE (Hunter) when ignition could not be guaranteed.
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Compact Ignition Tokamak (1985-1989)
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Based on today’s understanding, CIT  would have “ignited” with
Q = 35 using a conservative H98(y,2) = 0.92 !!!!
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The Next Step Burning Plasmas
• 1980 - Fusion Engineering Device (FED), SC or Cu coils, 200 MW, 200s as

part of MFE Act  to be competed after expenditure of  $1.6B

• 1984 - Tokamak Fusion Core experiment (TFCX), SC coils, 200 MW,   ss
estimated cost $1.7B - cancelled too expensive

• 1986 - Compact Ignition Tokamak (CIT), LN Cu coils - 400 MW, 5 s, $0.7B

• 1989 - CIT was in FY89 budget with PACE funding for design, but was
withdrawn by DOE (Hunter) when ignition could not be guaranteed.

• 1990 - BPX a larger CIT with less ambitious goals and higher cost was put
forward - cancelled in Sept 1991(SEAB, Townes Panel) on to TPX

• 1992 - ITER - US joins ITER as one of four partners, has Lead Design Center

• 1997 - US leaves ITER after completion of Engineering Design Activity

• 1998 - US initiates study of advanced CIT called FIRE

• 2003 - US joins ITER as one of seven partners
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ITER Construction is Now Underway

ITER Site Under Construction

First Plasma planned for  2018

First DT operation planned for ~2022

Reactor scale
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ITER Construction is Now Underway

ITER Site Under Construction

First Plasma planned for  2018

First DT operation planned for ~2022

Reactor scale

==> 2027?



Is ITER Sufficient to Resolve Burning-Plasma Issues for DEMO?

High Fusion Gain - attain good confinement with profiles defined by alpha
heating(Pα/Pext = Q/5), possible non-linear dependence of transport on
gradients, coupled to edge plasma by pedestal, optimum temperature for
fusion ~ 15 keV and high density but efficient current drive favors higher T ~
30 keV and lower density.

Sustainment (100% NI) - produce large bootstrap current with pressure
profiles defined by alpha heating and residual current driven efficiently  by
low power Pcd ≤ 5Pα/Q.

High Fusion Power Density (β2 B4 <σv>/T2) - to provide high neutron wall
loading.  Can near optimum β be attained for alpha-defined profiles?

Plasma Control (Pcd + Pcont = 5Pα/Q ) - maintain plasma control (esp.
disruptions) with low power typically < 0.15Pα. Will a burning plasma evolve
to a self-organized state with good confinement, high bootstrap and high β?

Exhaust Power Density - can high exhaust power densities be handled while
maintaining edge plasma for high Q and efficient CD with long PFC lifetime?

Self- Conditioned PFCs - will the PFCs self-condition that is consistent with
high Q and β, and long PFC lifetime?



High-Performance Steady-State Burning-Plasma

• ARIES-I And ARIES-AT span the range of a possible DEMO.

• Individual gaps between ITER (scenario 4) and ARIES range between
2.5 and 10

Metrics and Gaps from ITER to DEMO
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Inertial Confinement Fusion, Early Days

• Radiation compression of DT to produce fusion energy
demonstrated in the early 50s in Greenhouse George Cylinder
test (and others).

• Invention of the laser in early 60s offered the possibility of a
programmable repetitive driver for micro targets. Research
continued on intense particle beam drivers in USSR and US.

• Idealized calculations in late 60s suggested 1kJ needed to
achieve breakeven using micro targets and direct drive.

• 1972- Nature article by Nuckolls et al with computer modeling of
laser driven compression   Nature Vol. 239, 1972, pp. 129

• Laser driven experiments at LLNL and elsewhere from mid 70s
to mid 80s (Nova), revealed importance of plasma instabilities
and driver uniformity,  raising required driver energy to MJ
range.
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Construction of NIF/LMJ - ICF Burning Plasmas

• Classified Centurion-Halite nuclear tests in ~1986 are reported to have
validated compression modeling

• Many aspects of US ICF declassified in Nov 1994, allowing target
designs to be discussed.

• Omega Project achieves gain of 0.01 using direct drive of a DT capsule
in 1996.

• Fast Ignitor concept (1995) offers possibility of reduced driver energies

• There has been dramatic progress in driver intensity and pellet
fabrication in the past 40 years, and many challenges remain.

• Multiple paths in drivers (Glass, KrF, Z-pinch) are being pursued.
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• Glass laser energy has increased 106

• Fusion energy will need:
increased efficiency
increased repetition rate

NIF Enabled by Rapid Advance in Laser Technology
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FI Expt’s  -
Omega, FIREX,
HIPER

Target Designs with Varying Degrees of Risk
Provide Adequate Gain for all Driver Concepts

Tabak Snowmass
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Hot Spot Ignition
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Tabak Snowmass
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NIF Ready to Begin Ignition Campaign

NIF Groundbreaking  May 29, 1997

NIF Dedication            May 29, 2009

Ignition Campaign -   starting 2010
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Some Overall Highlights

• A strong scientific basis has been established for fusion.

• Diagnostics and Plasma Technology  (Aux heating, CD, pellet inj) enabled progress.

• Computer Simulations are becoming more realistic and integral to analysis and prediction.

• Several promising paths to fusion, each working on optimization and sustainment.

• Temperatures needed for fusion achieved  - in many facilities.

• Confinement needed for fusion is being approached - one step away.

• Complex fusion systems have been operated at large scale.

• Fusion systems using fusion fuel (DT) operated safely.

• Fusion could move much faster if required resources were applied.

• Now on the threshold of energy producing plasmas in both magnetic and inertial fusion.
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ITER NIF

Facilities to Produce Fusion Energy are under
Construction
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ITER NIF

Facilities to Produce Fusion Energy are under
Construction

First D-T  ~2027?
Fusion Gain, Q   10
Fusion Energy/pulse 200,000 MJ

First D-T  ~2010
Fusion Gain, Q 10 - 20
Fusion Energy/pulse 40 MJ
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NIF and ITER will Extend Progress in Fusion Energy
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LIFE

Fission-Fusion in 1 Decade

5 m
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First D-T      ~2020
Fusion Gain, Q         25
Fusion Power     400 MW
Fission + Fusion Power    2,500 MW

LIFE

Fission-Fusion in 1 Decade

5 m
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First D-T      ~2020
Fusion Gain, Q         25
Fusion Power     400 MW
Fission + Fusion Power    2,500 MW

DEMO

Fusion in 3 Decades

5 m

LIFE

Fission-Fusion in 1 Decade

5 m
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First D-T Power ~2025+15
Fusion Gain, Q     20 - 45
Fusion Power 2,500 MW

First D-T      ~2020
Fusion Gain, Q         25
Fusion Power     400 MW
Fission + Fusion Power    2,500 MW

DEMO

Fusion in 3 Decades

5 m

LIFE

Fission-Fusion in 1 Decade

5 m
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•  Unfortunately, magnetic fusion has missed some critical opportunities
that have delayed the program eg. 20 years ago with CIT.

• Inertial fusion seized the stockpile stewardship opportunity in the early
1990s, and now stands on the threshold of major advances with NIF.

•  US MFE has drifted into a “treading water” phase, and is adding more
small steps instead of taking a bold step forward.

•  An opportunity for an ambitious US Energy R&D program is opening -
a recognized need for carbon-free energy, and  strong science
leadership in the government.

•  If the US had a Manhattan Project for Energy, what could fusion do?

•  A comprehensive long range plan is needed for the US magnetic
fusion energy program!!


