Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy

Presented by
John Sethian
Naval Research Laboratory
Fusion Energy with Lasers and Direct Drive

- Pellet factory
- Spherical pellet
- Reaction chamber
- Array of Lasers
- Final optics
- Electricity or Hydrogen Generator
Why we believe direct drive with lasers can lead to an attractive power plant

1. Simplest target physics:

2. Laser (most costly component) is modular

3. Separate components lower cost of development

4. Simple spherical targets:
 facilitates mass produced “fuel"

5. Power plant studies economically attractive

6. We have made a lot of progress!!
We are committed to Direct Drive for the Fusion Energy Mission

Indirect Drive (Chosen path for NIF)
- Hohlraum
- Pellet
- Laser Beams
- x-rays

- Relaxed laser uniformity requirements
- Complex targets & physics
- Predict moderate energy gain (≤ 40) at 1 MJ laser energy

Direct Drive (IFE)
- Laser Beams
- Pellet

- Advanced lasers/ target designs overcome uniformity requirements
- Simpler targets & physics
- Predict Fusion Class Gains (> 140) at lower laser energy (500 kJ - 1 MJ)
Two laser options for Direct Drive: KrF and DPPSL
Both have potential to meet the IFE requirements

Electra KrF Laser (NRL)
$\lambda = 248$ nm (fundamental)
Gas Laser

Mercury DPPSL Laser (LLNL)
$\lambda = 351$ nm (tripled)
Solid State Laser

See talk by Frank Hegeler
Thursday PM

See talk by Chris Ebbers
Thursday PM
We encourage competition.
It leads to innovation and a better product.
And leads to it faster

[Image of race cars with text overlay]
KrF lasers have advantages for fusion energy

PHYSICS

- Deeper UV (248 nm vs 351 for glass):
 - Greater mass ablation rate and pressure at given intensity
 - Higher threshold for deleterious laser plasma instability (LPI) ~1.8x
 (so maximum ablation pressure is further increased)

- Focus of KrF beams can be readily "zoomed" to follow imploding pellet
 - increases coupling by 30%

- KrF has most uniform pellet illumination ➤.
 - 0.2% non-uniformity overlapped beams

ENGINEERING

- Industrial robust technology (used in industry, medical applications)
- Gas laser medium is easy to cool (tough to break gas)
Advances and Achievements

- target design
- lasers
- final optics
- target fabrication and engagement
- chamber
New Direct Drive Designs: Power plant class gains, much smaller laser

- **Shock ignition, $\lambda=248$ nm**
 - Soft Conventional Compression (< 300 km/sec)
 - Then spike to shock heat to ignition

- **Conventional Direct Drive (KrF or DPPSL)**
 - ~300 km/sec implosion

- **FTF Designs, KrF $\lambda=248$ nm**
 - Higher ablation pressure
 - 350 to 450 km/sec

- **NIF Indirect Drive**

- **Gain for Fusion Energy**
 - Enough for energy
 - ...at < 500 kJ
Shock Ignition predicts comparable gains as Fast Ignition... *without the complexities*

![Graph showing comparison between Shock Ignition and Fast Ignition]
Shock Ignition:
Shell accelerated to sub-ignition velocity (<300 km/sec), Ignited by converging shock produced by high intensity spike

Low aspect ratio pellet helps mitigate hydro instability

Laser Intensities
Peak main drive $\sim 1.5 \times 10^{15}$ W/cm2
Igniter pulse is $\sim 10^{16}$ W/cm2
High resolution 2-D simulations show shock ignition designs are robust against hydro instabilities

2-D Gain: 60x

2-D Gain: 78x

2-D Gain: 69x

250 kJ shock ignited target – NRL FASTRAD3D simulations

Andy Schmitt NRL
Target physics codes have been benchmarked with experiments on Nike Laser.

![Graph showing mass variation (mg/cm³) over time (ns) for Cryogenic Liquid D₂ rippled targets and a computer model.](image)
Laser driven instabilities cause problems:
- Produces high energy electrons that preheat DT fuel
- Scatters laser beam, reducing drive efficiency

One challenge, in any laser target design --- Predicting Laser Plasma Instabilities (LPI)
Nike experiment to study Laser Plasma Instability at prototypical intensities (up to 10^{16} W/cm2)

Targets can be cryogenic – e.g. liquid deuterium

Jim Weaver NRL
Nike Experiments are encouraging:
Higher threshold for KrF
Onset of LPI $\sim 3 \times 10^{15}$, above target design point

These experiments: 12 Nike backlighter beams will be repeated @ 1 kJ with 44 Nike main beams
LLNL (LASNEX) simulations suggest hot electrons induced by spike may be a **good thing**

Gain 60 target may be able to withstand hot electrons up to 100 keV
Advances and Achievements

• target design
 • KrF lasers
• final optics
• target fabrication and engagement
• chamber
Electra Krypton Fluoride (KrF) Laser
- electron beam pumped gas laser

Electra KrF Laser
300 - 700 Joules
1 Hz to 5 Hz
> 7% wall plug efficiency (based on component R&D)

see talk by Frank Hegeler (Thurs PM) for details
Advanced Solid State Pulsed Power Demo:
1 M shots at 5 Hz, 400,000 shots @ 10 Hz

- Based on Commercial switches (component life > 300 M shots)
- > 80% efficiency
- Attractive cost: < $ 2 M for Electra (15 kJ)

see talk by Frank Hegeler (Thurs PM) for details
Hibachi foil durability has been a challenge. This is a Hibachi Foil.

Typical Foil lifetime: 5,000 - 15,000 shots
Plasma Physics to the rescue

Penning Ionization Gauge

Spectrometer tuned to look at Ar emission (>700 nm: below Ar, above everything else)

before

after

J Giuliani & R Jaynes (NRL)
The Smoking Gun

Penning
Ionization
Gauge
Pinhole
Early
Notification
Increasing A-K gap 10%, lowering charge volts 15%: Eliminated voltage reversal, *and hence foil emission*

Red
- A-K gap 5.3 cm
- Charge 43 kV

Blue
- A-K gap 5.9 cm
- Charge 36 kV
Electra continuous durability has been extended to the 90,000 shot range.

Electra Cell after 30,000 shot continuous laser run

- 90,000 laser shots (10 hrs) continuous @ 2.5 Hz
- 150,000 laser shots on same foils @ 2.5 Hz
- 50,000 laser shots on same foils @ 5 Hz
- 300,000 laser shots in 8 days of operation
- 500,000 e-beam shots since 12/31/2008

Most runs NOW limited by pulsed power
A video starring Electra
Advances and Achievements

• target design
• lasers
• final optics
• target fabrication and engagement
• chamber
The final optics train

CAD Drawing of Final Optics, Coupled with MCNP simulation of Neutron flux

Mohamed Sawan (Wisconsin)
Malcolm McGeoch (PLEX)
GIMM laser damage threshold:
> 3.5 J/cm² @ 10 M shots

10 M shots at 3.5 J/cm² (not a limit!)

Mark Tillack (UCSD)
Dielectric mirror appears to resist predicted neutron fluence (0.02 dpa) on second mirror

The "key":
Match neutron-induced swelling in substrate and mirror layers

Experiment:
Expose in HIFR (ORNL Reactor)
Prototypical fluence, temperature

Measurements:
Reflectivity
Laser damage threshold

<table>
<thead>
<tr>
<th>Laser Damage Threshold (Al₂O₃/SiO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No dpa</td>
</tr>
<tr>
<td>86-87%</td>
</tr>
</tbody>
</table>

Lance Snead (ORNL)
Tom Lehecka (Penn State)
Mohamed Sawan (Wisconsin)
Advances and Achievements

- target design
- lasers
- final optics
- target fabrication and engagement
- chamber
Target fabrication:

- Mass produce foam shells that meet specs
- Fluidized bed for mass cryo layering
- Estimate Cost < $0.16 each

100 mg/cc foam shell

x-ray picture of 4mm foam

Mass Production: 22 shells/min

Cryogenic Fluidized bed to make smooth DT ice

Diagram:

- Laser A
- Laser B
- Photodiode Sensors
- Variable Speed Pump
- Triple Orifice Generator
- DAQ
- Input/Output
- PC
- Data

GA, Schaffer, UCSD
Recent target fabrication advances:

♦ Higher yield in non-concentricity
♦ Apply thin solid coat on foam during gellation

Higher percentage of shells that meet non concentricity (NC) specs

Proof of concept: Thin solid coating on Divinyl Benzine foam

Additional coating advances made at GA
Target Engagement:
Concept based on detecting "Glint" off the target.

Target Glint source
Target
Target Injector

Focusing mirrors
Grazing incidence mirror

Vacuum window
Wedged dichroic mirror

Coincidence sensors

Amplifier / multiplexer/ fast steering mirrors

Dichroic mirror
Align Laser
Drive Laser

Cat’s eye retroreflector

Glint off target

Lane Carlson (UCSD)
Target Engagement: Bench test: Mirror steers laser beam to target within 34 μm. Need ~20
Advances and Achievements

- target design
- lasers
- final optics
- target fabrication and engagement
- chamber
The "first wall" of the reaction chamber must withstand the steady pulses of x-rays, ions and neutrons from the target.
Chamber options

<table>
<thead>
<tr>
<th>Chamber Type</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wall/vacuum</td>
<td>Simplest, Eases laser / target issues</td>
<td>Materials challenge</td>
</tr>
<tr>
<td>Magnetic Intervention/vacuum</td>
<td>Small chamber, Really eases laser / target issues, The ion dump</td>
<td></td>
</tr>
<tr>
<td>Replaceable solid wall/vacuum</td>
<td>Eases laser / target issues, Mechanical/operational complexity</td>
<td></td>
</tr>
<tr>
<td>Gas in chamber</td>
<td>Smaller chamber, Challenging laser / target issues, Clearing Chamber (plasma)</td>
<td></td>
</tr>
<tr>
<td>Thick liquid walls</td>
<td>No materials issues (inc neutronics), Challenging laser / target issues, Droplet formation/ complexity</td>
<td></td>
</tr>
</tbody>
</table>

Sawan, Wed SP3B-16

Gentile, Wed SP3B-21

combo
Solid Wall Chamber: Experiments/Modeling

Thermo-mechanical cyclic stress: Mostly Solved

Surface & Interface

Ions: RHEPP (SNL)
Laser: Dragonfire (UCSD)
Plasma Arc Lamp (ORNL)

Helium Retention: Remaining Major Challenge

IEC (Wisconsin)
Van de Graff (UNC)

0.2 to 22.3 FPD

Modeling (Wisc/UCLA)

Modeling (UCLA/Wisc)
First "Nano-Engineered" Tungsten helium retention experiments are encouraging

Mass loss rate: high at first, slows afterwards

28 kg/FPY (< 1 um solid)

Actual exposure (He⁺/cm²)
(From 10 - 90 keV = approx 5% total spectrum)

Sam Zenobia (Wisconsin)
Magnetic Intervention:
Cusp magnetic field keeps ions off the wall
(in Plasma Physics terms: Conservation of $P_\theta = rA_\theta = 0$)

Plasma expansion initially spherical
Ion cloud deforms as it encounters cusp
Ions, *at reduced power*, leak into external dumps

1. Physics demonstrated in 1979 NRL experiment:
2. NRL experiment modeled by D. Rose at Voss Scientific (2006)
An example of a Magnetic Intervention Chamber

Ions deflected downward by magnetic fields
Ion energy absorbed in Gallium Rain Ion Dissipaters™

Chamber radius: 5 m
Point cusps: 16 T
Main coils: 0.75 T

Energy absorption in Ga:
85% in first 10 mg/cm²
15% in next 100 mg/cm²

Only first layer evaporates
Gallium inventory enough
so mean temp rise < 300°C

NB Vapor P of Ga = 10⁻⁶T at 720 C

A.E. Robson, NRL (ret)
Objectives for next two years

• Nike: Experiments/theory show physics advantages of KrF.
 -- Refine/validate high gain designs

• Electra: Demonstrate >1 M shots continuous laser operation.
 -- with technologies capable of 300 M shots (e.g. all solid state)

• Develop critical IFE technologies.
 -- Mirrors, chamber concept(s), target fabrication / tracking, materials

If these are successful, next is a three stage program to IFE
A three stage plan for Laser Fusion Energy

Stage I Develop full size components
- Laser module (e.g. 18 kJ 5 Hz KrF beamline)
- Target fabrication/injection/tracking
- Chamber design
- Refine basic pellet physics

Stage II Fusion Test Facility (FTF)
- Demonstrate physics / technologies for a power plant
- Develop/ validate fusion materials and structures
- Operating: ~2022
- Significant participation by private industry

Stage III Prototype Power plant(s)
- Electricity to the grid
- Transitioned to private industry
What makes a credible fusion energy program?

The only function of economic forecasting is to make astrology look respectable.

John Kenneth Galbraith
What have we accomplished? or, the justification for pursuing an energy program

- KrF based target designs show energy class gains < 1 MJ.
 Designs backed with experimentally verified codes
 KrF advantages demonstrated (LPI, hydro, uniformity).
 - Need experiments at higher energies, more robust designs

- KrF lasers demonstrated, with scalable technologies:
 Rep rate (2.5 - 5 Hz)
 Efficiency (> 7%) (with individual components)
 High energy rep-rate operation (250-700 J).
 Continuous operation (10 hr)
 Credible path to durability
 - Need integrated 1 M shot continuous demonstration

Continued on next slide....
What have we accomplished?

• Optics components resistant to prototypical neutrons, laser damage
 – Need larger sizes, need extension to 300 M shots (from 10 M)

• Can mass produce high precision foam shells for targets
 – Need higher yield, Need gas tight coating

• Demonstrated smooth DT ice over foam layer
 – Need mass production layering demonstration (Fluidized bed)

• Demonstrated target engagement using glint technique
 – Need another 14 um pointing (now at 34, need 20)

• Several viable chamber concepts, backed with experiments/theory
 – Need refinement, integrated, economical design

• Have conceptual designs for ancillary components:
 – Blanket, tritium handling/processing, vacuum system, power conversion
The Vision...A plentiful, safe, clean energy source

A 100 ton (4200 Cu ft) **COAL** hopper runs a 1 GWe Power Plant for **10 min**

Same hopper filled with **IFE targets**: runs a 1 GWe Power Plant for **7 years**