

Experimental Advanced Superconducting Tokamak (EAST)

Design, Fabrication and Assembly

Weng Peide

Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui, 230031, P.R. China September 2005

ASIPP Introduction

EAST is one of Chinese national fusion project The main mission of the project is to develop an advanced superconducting tokamak

- Explore and demonstrate of steady-state operation with high plasma performance.
- Investigate of advanced tokamak physics and demonstration of stationary H-mode operation.
- Investigate of particle and heat fluxes handling on a time scale much longer than the wall equilibration time.

The construction begun in 2000 and will be completed in 2006, total budget is about 300 million Yuan.

Major Radius R _o	1.7 m		
Minor Radius a	0.4 m		
Toroidal Field B _o	3.5 T		
Plasma Current I _P	1 MA		
Elongation K _x	1.2 - 2		
Triangularity d _x	0.2-0.5		
Pulse length	1000 s		
Heating and Drivin	g:		
(first phase)			
ICRF	3 MW CW		
LHCD	3.5 MW CW		
ECRH	0.5 MW		
Configuration:			
Single null divertor			
Double-null divertor			

ASIPP Conductor design and R&D

	TF	CS and PF 7-10	PF 11-14
Size	20.4 × 20.4	20.4 × 20.4	18.5 × 18.5
Number of SC strands	120	120	60
Coating	Sn alloy	Ni	Sn alloy
Cu / non-Cu	4.91	4.91	8.23
Void fraction	0.34	0.34	0.36

Total weight of NbTi strands: 20 tons

CICC jacketing line 58 conductors (35 km) have been fabricated

Superconducting coils; CIC conductor; Uninterrupted multi-pancake winding; VPI; low rigidity support; Supercritical helium forced flow

TF coil

16 D shape TF coil			
Turns/coil	130		
Size	3.52 × 2.51 m		
Pancakes	2× 6		
I _{nom}	14.3 kA		
B _{max}	5.8T		
T _{in}	4.5 /3.8 K		

PF7 and PF9 assembly

Turns	248

Pancakes 20

I_{max} 14.5 kA

dB/dt 3.5 T/s

Size	2.67× 0.39 m
Weight	5.8 ton
B _{max}	5 T
T _{in}	4.5 /3.8 K

Storage energy 19 MJ

PF 11-12

	Turns	Size (m)	Pancake	I _{max} (kA)	B _{max} (T)	dB/dt(T/s)	T _{in} (K)
PF 11-12	60	6.05 × 0.22	10	14.5	1.5	0.7	4.5 /3.8
PF13-14	32	6.65 × 0.18	8	14.5	1.5	0.7	4.5 /3.8

PF coils

Coil fabrication

Full welded double wall structure
16 horizontal & 32 vertical ports
Low rigidity gravity supports
Volume 38 m³; Ultimate

Design feature Vacuum Vessel

Ultimate Vacuum

1.3×10⁻⁵P_a

In vessel components

VV and CS Thermal shield

Consist of vacuum vessel thermal shield cryostat thermal shield transition thermal shields **Insulation break** 8 **Sandwich structure** wall thickness 25/40 mm panels thickness 3 /5 mm cooling pipe 19×19 ×2 Total surface area 310 m² **Total weight 22 tons Cooling media** He gas 110g/s Mass flow rate **Inlet temperature** 60 /80 K. < 0.4 bar **Pressure drop**

Consists of upper head, middle cylinder and bottom section. **Provide the vacuum environment** and support for all of magnets, vacuum vessel and thermal shield **48** penetrations for the vacuum vessel ports extension **19** penetrations for feeder line and maintain access **Diameter** 7.6 M Height

Weight7Volume1Ultimate pressure5

7.1 M 78 tons 180 m³ 5×10⁻⁴P_a

Coil Test

16 TF coils, one CS coil, CS assembly, PF 7-9, PF 8-10 and PFMC have been tested. Test program :

•Insulation

- •Cryogenic & thermal-hydraulic behavior
- •Resistance of coil internal joints
- •Coil exiting to nominal current
- •Quench current measurement.
- •Simulate Plasma initiation
- •AC losses test

Test facility

Time

CS coil test PF 7-9 coil test CS assembly in test facility

2kW/4.4K+11kW/80K refrigerator

elium distributio

ASIPP **Power supply system for magnet**

36 group of 15 kA AC-DC convertor total nominal power 210 MVA

13 sets of power supply system for TF, CS and PF magnets.

ASIPP Summary

- Except the in vessel components, the fabrication of all parts is completed. All of magnets, except 4 of big PF coils, have been tested and the results show that the magnets are accepted.
- It is planned to complete the assembly and make the first cool down around the end of this year. The commissioning will begin in 2006.
- The experiment in first stage will be focused on the steady state operation with 1 MA plasma, it will be a challenge for us and ASIPP welcome for cooperation.
- China participate ITER, the technology developed for EAST will be useful during the fabrication of ITER parts in China.