Diagnostic Challenges and Opportunities on ITER

David Johnson UFA Satellite Meeting Savannah APS DPP November 25, 2004

Outline

• Diagnostics in the ITER environment

- new implementation challenges
- diagnostics currently being designed into ITER ports
- 'uncredited' systems

US role in ITER diagnostics

- specific diagnostic systems presently allocated to the US
- R&D needs
- present US participation in ITER diagnostics
- My view of the next couple of years

ITER environment

'Front ends' will be very different on ITER

- A host of radiation effects on cables and insulators
- Thermal control through conduction to actively cooled surfaces
 - UV and x-ray surface heating of ~ 5-10 watts/cm²
 - volume nuclear heating in the range of ~ 0.1 -1 watt/cm³
- Diagnostic access will be through complex labyrinths to reduce neutron streaming
- Refractive optics can only be used at the outside of these labyrinths
 - Need to rely on metal mirrors
- First mirrors will be subject to degradation due to erosion by neutral particles and due to deposition
 - In-situ calibration techniques need to be developed
- Long path lengths and relative motion of massive components
 - development of real time alignment techniques
- Components need to be very reliable and compatible with remote handling.

ITER diagnostics being integrated into port designs

(currently 'uncredited')

Magnetic Diagnostics	Spectroscopic and NPA Systems
Vessel Magnetics	CXRS Active Spectr. (based on DNB)
In-Vessel Magnetics	H Alpha Spectroscopy
Divertor Coils	VUV Impurity Monitoring (Main Plasma)
Continuous Rogowski Coils	Visible & UV Impurity Monitoring (Div)
Diamagnetic Loop	X-Ray Crystal Spectrometers
Halo Current Sensors	Visible Continuum Array
Neutron Diagnostics	Soft X-Ray Array
Radial Neutron Camera	Neutral Particle Analysers
Vertical Neutron Camera	Laser Induced Fluorescence (N/C)
Microfission Chambers (In-Vessel) (N/C)	MSE based on heating beam
Neutron Flux Monitors (Ex-Vessel)	Microwave Diagnostics
Gamma-Ray Spectrometers	ECE Diagnostics for Main Plasma
Neutron Activation System	Reflectometers for Main Plasma
Lost Alpha Detectors (N/C)	Reflectometers for Plasma Position
Knock-on Tail Neutron Spectrom. (N/C)	Reflectometers for Divertor Plasma
Optical Systems	Fast Wave Reflectometry (N/C)
Thomson Scattering (Core)	Plasma-Facing Comps and Operational Diag
Thomson Scattering (Edge)	IR Cameras, visible/IR TV
Thomson Scattering (Divertor region)	Thermocouples
Toroidal Interferom./Polarimetric System	Pressure Gauges
Polarimetric System (Pol. Field Meas)	Residual Gas Analyzers
Interferometers for Divertor Plasma	IR Thermography Divertor
Collective Scattering System	Langmuir Probes
Bolometric Systems	Erosion and dust monitors
Bolometric Arrays for Main Plasma & Divertor	Diagnostic Neutral Beam

US to provide 16% of ITER diagnostic effort

 Includes 5 'Port Plugs' - supporting structures and shielding 				
1. 2 upper ports	preliminary			
2. 2 equatorial ports	preliminary			
3. 1 divertor port	port preliminary			
 Includes 7 diagnostic systems integrated into these and other 				
ports				
4. Visible/IR cameras	preliminary			
5. Electron cyclotron emission	preliminary			
6. LFS reflectometer	preliminary	level		
7. Toroidal interferometer/polarimeter	conc./prel.	of		
8. Motional Stark effect on heating beam	conceptual	aesign		
9. Divertor interferometer	pre-conceptual			
10. Residual gas analyzers	pre-conceptual			

Proposed US WBS organization has these 10 elements

Diagnostic packages include port support structures

Numerous systems must be integrated into each port

- Design constraints
 - Intermingling of numerous labyrinths, many with precision optics
 - Provide access while limiting neutron streaming
 - Provide attachments and cooling to blanket shield modules

- Example Port 3 is a US responsibility
 - US will provide the MSE system as the 'lead diagnostic'
 - Edge MSE view in port 3 (US) and core view in port 1 (EU)

(EU)

(RF)

- US is also responsible for integrating the following into port 3
 - Visible/IR camera view
 - Two edge CXRS views
 - H_{α} arrays (RF)

US to provide 16% of ITER diagnostic effort

 Includes 5 'Port Plugs' - supporting structures and shielding 				
1. 2 upper ports	preliminary			
2. 2 equatorial ports	preliminary			
3. 1 divertor port	or port preliminary			
 Includes 7 diagnostic systems integrated into these and other 				
ports				
4. Visible/IR cameras	preliminary			
5. LFS reflectometer	preliminary			
6. Electron cyclotron emission	preliminary	level		
7. Toroidal interferometer/polarimeter	conc./prel.	_ Of		
8. Motional Stark effect on heating beam	conceptual	aesign		
9. Divertor interferometer	pre-conceptual			
10. Residual gas analyzers	pre-conceptual			

Proposed US WBS organization has these 10 elements

Upper Visible/IR Cameras

(6 cameras in upper ports)

Toroidal Interferometer/Polarimeter

- Expected to provide high reliability and good time resolution
 necessary for density feedback control
- Five tangential sightlines with retro-reflectors located in outer blanket shield modules
- Two color (5.3 μ and 10.6 μ) interferometry for vibration compensation
- Polarimetry signal (10.6µ) will provide check against fringe jumps
- R&D issues
 - survivability of first mirror, retro-reflectors, shutter
 - feedback stabilized alignment

Electron Cyclotron Emission

- For T_e profile control and detection and control of low (m,n) MHD modes, locked modes, disruption precursors.
- Employs two Gaussian collection antennas staggered above and below midplane to access core for variety of plasma shapes.
- A shutter can be actuated to bring hot source into view for in-situ calibration.
- Miter bends provide compensation for machine movement.
- R&D issue
 - development of radiation hardened hot source

R&D Needs

• Generic

- Survivability of mirrors
 - understanding the deposition process, both at outer wall and in divertor region
 - mitigation techniques: shutters, screening, in-situ cleaning
- Prototyping of in-situ calibration and alignment techniques
- Prototyping of waveguide runs
- Better definition of the limits of where fiber optics can be used and possible use of new fiber technologies

Specific needs but currently uncredited and unassigned

- Dust and erosion detectors
- Long-pulse magnetic sensors
- ITER compatible lost-alpha detectors, SXR detectors, knock-on tail neutron spectrometers

Identifying US Diagnostic Teams

- Ideal team members
 - strong mechanical engineering group for port integration and frontend design tasks
 - diagnostic group which is expert in instrumentation
 - modeling experts able to simulate performance to aid in design and to prepare data analysis tools
 - component experts for specific R&D tasks
 - ties with existing devices for prototyping ideas

Envision two solicitations

- expressions of interest to identify interested parties and motivate teaming, to clarify roles for university, industry, and labs.
- full proposals subject to competitive review process

– Timing

- EOI solicitation in 3-6 months
- full proposals in 6-18 months

- The US is lagging behind the other major diagnostic providers (EU, JP, RF) as they actively pursue more detailed ITER designs.
- Effort in other parties is now being focused on their allocated systems, however, they are also pursuing 'uncredited' systems.
- The US needs to get experts involved soon in diagnostic design for US systems and for uncredited systems, in order to be able to effectively
 - compete for port space as these designs are being integrated into ports
 - meet the proposed ITER delivery schedule.

Schedule for development for a major ITER diagnostic

operate

- Diagnostic implementation on ITER faces significant technical challenges due to the harsh ITER environment, and the need for high reliability and remote handling.
- Negotiating for a strong physics role in ITER, the US made a strong bid for diagnostics, and will provide 16% of the diagnostic systems.
- Today there is no ITER diagnostic design activity in the US. This needs to change soon if the US is to keep pace with the other major providers and meet IT delivery schedule.
- To begin the design effort, US teams need to be identified.
- Proposed that solicitations for 'expressions of interest' will occur in the near future.
- The US University Fusion Community must play a significant role in providing ITER diagnostics.

ITER Port-Based Packages

Package	Level	Group	Lead Diagnostic	credit % (less installation)	Other diagnostics in port [uncredited in parenthesis]	includes components in ports
3	Upper	1a	Vis./IR Cameras (Upper only)	1.8%	N2 activation(P4-KO), VNC(P23- RF)	U2(P5-RF), U5(P3-US), U8(P8- JA), U11(P9-JA), U14(P1-EU), U17(P10-US)
10	Upper	1b	Reflectometer (LFS Main Plasma)	2.5%	x-ray crystal(P7-Flex), vis/IR cameras(P3-US), bolometers (P21-Flex), [SXR array]	E11(P15-RF)
12	Equat.	1b	MSE based on heating beam	2.4%	vis/IR cameras(P11-EU), CXRS(P2-EU), H-alpha(P5-RF)	E1(P11-EU), E3(P12-US)
13	Equat.	1a	ECE Toroidal Interferometer/Polarimeter	4.6%	[SXR array, FW Reflectometer]	E9(P13-US)
18	Lower	1a	Interferometer (Divertor)	2.5%	[LIF], magnetics(P22-Host), bolometers & gauges(P21-Flex)	L8(P18-US), L14(P20-Fund)
28	Distr.	1a	Residual Gas Analyzers	2.1%		?
				16.0%		

Motional Stark Effect Polarimeter

- Highly desirable for optimizing plasma performance using magnetic shear.
- Utilizes the 1 MeV ITER heating beams.
- Two viewing systems of two beams provide good spatial resolution for edge and core regions.
- R&D issues
 - survivability of first mirror and other mirrors, considering sensitivity of polarization characteristics to deposition
 - in-situ calibration techniques

Main Plasma Reflectometer (LFS)

- Provides density profile, MHD, and fluctuation information in the gradient, edge, and SOL regions.
- Both X and O mode employed using several launch/receive pairs.
- Miter bends provide compensation for machine movement.
- R&D issues
 - prototyping of waveguide runs needed to assess losses

Divertor Interferometer

- This system was originally designed as a microwave system, but high divertor densities and density gradients preclude this approach.
- Design needs to be revisited at a conceptual level to see if a CO₂ laser based interferometer is feasible considering the tight spatial constraints.
- R&D issues
 - survivability of optics which see the divertor throat region
 - feedback stabilized alignment concepts

Assessment of Measurement Capability

GROUP 1a	GROUP 1b	GROUP 2
Measurements For Machine Protection and	Measurements for Advanced Control	Additional Measurements for
Basic Control	incusar carears for indvanced control	Performance Eval. and Physics
Plasma shape and position, separatrix- wall	Neutron and α -source profile	Confined <i>α</i> -particles
gaps, gap between separatrixes	Helium density profile (core)	TAE Modes, fishbones
Plasma current, g(a), g(95%)	Plasma rot. (tor and pol)	T _e profile (edge)
Loop voltage	Current density profile (a-profile)	no To profiles (X-point)
Fusion power	Electron temperature profile (core)	T: in diverter
$\beta_{N} = \beta_{tor}(aB/I)$	Electron den profile (core and edge)	
Line-averaged electron density	Ion temperature profile (core)	Plasma flow (divertor)
Impurity and D.T influx (divertor, & main	Radiation power profile (core, X-point	nT/nD/nH (edge)
plasma)	& divertor)	nT/nD/nH (divertor)
Surface temp. (div. & upper plates)	Zeff profile	Te fluctuations
Surface temperature (first wall)	Helium density (divertor)	ne fluctuations
Runaway electrons	Heat deposition profile (divertor)	Radial electric field and field
'Halo' currents	Ionization front position in divertor	fluctuations
Radiated power (main pla, X-pt & div).	Impurity density profiles	Edge turbulence
Divertor detachment indicator	Neutral density between plasma and first wall	MHD activity in plasma core
(J _{sat} , n _e , T _e at divertor plate)	ne of divertor plasma	
Disruption precursors (locked modes,m=2)	Te of divertor plasma	
H/L mode indicator	Alpha-particle loss	
Zeff (line-averaged)	Low m/n MHD activity	
nt/np in plasma core	Sawteeth	
FL Ms	Net erosion (divertor plate)	
Gas pressure (divertor & duct)	Neutron fluence	
Gas composition (divertor & duct)		
Dust		

Expect to meet meas. reqs; maybe/maybe not; expect not to meet meas reqs.